Skip to main content

2022 | OriginalPaper | Buchkapitel

Zero-Shot Learning-Based Detection of Electric Insulators in the Wild

verfasst von : Ibraheem Azeem, Moayid Ali Zaidi

Erschienen in: Machine Learning, Optimization, and Data Science

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An electric insulator is an essential device for an electric power system. Therefore, maintenance of insulators on electric poles has vital importance. Unmanned Aerial Vehicles (UAV’s) are used to inspect conditions of electric insulators placed in remote and hostile terrains where human inspection is not possible. Insulators vary in terms of physical appearance and hence the insulator detection technology present in the UAV in principle should be able to identify an insulator device in the wild, even though it has never seen that particular type of insulator before. To address this problem a Zero-Shot Learning-based technique is proposed that can detect an insulator device, that has never seen during the training phase. Different convolutional neural network models are used for feature extraction and are coupled with various signature attributes to detect an unseen insulator type. Experimental results show that inceptionsV3 has better performance on electric insulators dataset and basic signature attributes; “Color and number of plates” of the insulator is the best way to classify insulators dataset while the number of training classes doesn’t have much effect on performance. Encouraging results were obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akata, Z., Malinowski, M., Fritz, M., Schiele, B.: Multi-cue zero-shot learning with strong supervision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 59–68 (2016) Akata, Z., Malinowski, M., Fritz, M., Schiele, B.: Multi-cue zero-shot learning with strong supervision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 59–68 (2016)
2.
Zurück zum Zitat Burlina, P.M., Schmidt, A.C., Wang, I.: Zero shot deep learning from semantic attributes. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 871–876 (2015) Burlina, P.M., Schmidt, A.C., Wang, I.: Zero shot deep learning from semantic attributes. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 871–876 (2015)
3.
Zurück zum Zitat Gao, L., Song, J., Shao, J., Zhu, X., Shen, H.: Zero-shot image categorization by image correlation exploration. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, ICMR’15, pp. 487–490. Association for Computing Machinery, New York (2015) Gao, L., Song, J., Shao, J., Zhu, X., Shen, H.: Zero-shot image categorization by image correlation exploration. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, ICMR’15, pp. 487–490. Association for Computing Machinery, New York (2015)
4.
Zurück zum Zitat Guo, J., Guo, S.: A novel perspective to zero-shot learning: towards an alignment of manifold structures via semantic feature expansion. ArXiv arXiv:2004.14795 (2020) Guo, J., Guo, S.: A novel perspective to zero-shot learning: towards an alignment of manifold structures via semantic feature expansion. ArXiv arXiv:​2004.​14795 (2020)
5.
Zurück zum Zitat Zhang, L.L.L.S.H., Long, Y.: Adversarial unseen visual feature synthesis for zero-shot learning. Neurocomputing 329(7), 12–20 (2019)CrossRef Zhang, L.L.L.S.H., Long, Y.: Adversarial unseen visual feature synthesis for zero-shot learning. Neurocomputing 329(7), 12–20 (2019)CrossRef
6.
Zurück zum Zitat Karessli, N., Akata, Z., Schiele, B., Bulling, A.: Gaze embeddings for zero-shot image classification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6412–6421 (2017) Karessli, N., Akata, Z., Schiele, B., Bulling, A.: Gaze embeddings for zero-shot image classification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6412–6421 (2017)
7.
Zurück zum Zitat Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 453–465 (2014)CrossRef Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 453–465 (2014)CrossRef
8.
Zurück zum Zitat Liu, Y., Tuytelaars, T.: A deep multi-modal explanation model for zero-shot learning. IEEE Trans. Image Process. 29, 4788–4803 (2020)CrossRef Liu, Y., Tuytelaars, T.: A deep multi-modal explanation model for zero-shot learning. IEEE Trans. Image Process. 29, 4788–4803 (2020)CrossRef
9.
Zurück zum Zitat Markowitz, J., Schmidt, A.C., Burlina, P.M., Wang, I.: Hierarchical zero-shot classification with convolutional neural network features and semantic attribute learning. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), pp. 194–197 (2017) Markowitz, J., Schmidt, A.C., Burlina, P.M., Wang, I.: Hierarchical zero-shot classification with convolutional neural network features and semantic attribute learning. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), pp. 194–197 (2017)
11.
Zurück zum Zitat Nian, F., Sheng, Y., Wang, J., Li, T.: Zero-shot visual recognition via semantic attention-based compare network. IEEE Access 8, 26002–26011 (2020)CrossRef Nian, F., Sheng, Y., Wang, J., Li, T.: Zero-shot visual recognition via semantic attention-based compare network. IEEE Access 8, 26002–26011 (2020)CrossRef
12.
Zurück zum Zitat Vinyals, O., Blundell, C., Lillicrap, T.P., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. NIPS (2016) Vinyals, O., Blundell, C., Lillicrap, T.P., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. NIPS (2016)
13.
Zurück zum Zitat Peng, P., Tian, Y., Xiang, T., Wang, Y., Pontil, M., Huang, T.: Joint semantic and latent attribute modelling for cross-class transfer learning. IEEE Trans. Pattern Anal. Mach. Intell. 40(7), 1625–1638 (2018)CrossRef Peng, P., Tian, Y., Xiang, T., Wang, Y., Pontil, M., Huang, T.: Joint semantic and latent attribute modelling for cross-class transfer learning. IEEE Trans. Pattern Anal. Mach. Intell. 40(7), 1625–1638 (2018)CrossRef
14.
Zurück zum Zitat Qin, J., Wang, Y., Liu, L., Chen, J., Shao, L.: Beyond semantic attributes: discrete latent attributes learning for zero-shot recognition. IEEE Signal Process. Lett. 23(11), 1667–1671 (2016)CrossRef Qin, J., Wang, Y., Liu, L., Chen, J., Shao, L.: Beyond semantic attributes: discrete latent attributes learning for zero-shot recognition. IEEE Signal Process. Lett. 23(11), 1667–1671 (2016)CrossRef
15.
Zurück zum Zitat Manning, C.D., Ng, A.Y., Socher, R., Ganjoo, M.: Zero-shot learning through cross-modal transfer (2013) Manning, C.D., Ng, A.Y., Socher, R., Ganjoo, M.: Zero-shot learning through cross-modal transfer (2013)
16.
Zurück zum Zitat Shen, F., Zhou, X., Yu, J., Yang, Y., Liu, L., Shen, H.T.: Scalable zero-shot learning via binary visual-semantic embeddings. IEEE Trans. Image Process. 28(7), 3662–3674 (2019)MathSciNetCrossRef Shen, F., Zhou, X., Yu, J., Yang, Y., Liu, L., Shen, H.T.: Scalable zero-shot learning via binary visual-semantic embeddings. IEEE Trans. Image Process. 28(7), 3662–3674 (2019)MathSciNetCrossRef
17.
Zurück zum Zitat Wang, K., Wu, S., Gao, G., Zhou, Q., Jing, X.: Learning autoencoder of attribute constraint for zero-shot classification. In: 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pp. 605–610 (2017) Wang, K., Wu, S., Gao, G., Zhou, Q., Jing, X.: Learning autoencoder of attribute constraint for zero-shot classification. In: 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pp. 605–610 (2017)
18.
Zurück zum Zitat Xu, X., Hospedales, T., Gong, S.: Semantic embedding space for zero-shot action recognition. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 63–67 (2015) Xu, X., Hospedales, T., Gong, S.: Semantic embedding space for zero-shot action recognition. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 63–67 (2015)
Metadaten
Titel
Zero-Shot Learning-Based Detection of Electric Insulators in the Wild
verfasst von
Ibraheem Azeem
Moayid Ali Zaidi
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-95470-3_16