Skip to main content

2015 | OriginalPaper | Buchkapitel

3. ZnO Nanostructures for Alternate Energy Generation

verfasst von : Sunandan Baruah

Erschienen in: Advances in Communication and Computing

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Extensive use of fossil fuel in industries and automobiles has severely polluted the environment, adversely affecting the ecosystem. The fossil fuel reserves are also dwindling, creating a serious concern in the area of energy generation. With rapid advances in nanotechnology, researchers are putting in their efforts to exploit unique properties of nanomaterials to come up with environmentally friendly energy solutions. The abundantly freely available solar energy is undoubtedly the least utilized form of natural energy. Efficient tapping of solar energy can resolve the energy crisis that our world is currently going through. Solar cells developed using nanomaterials, though still at the infancy stage, will be able to harness solar energy quite efficiently and most importantly, will be able to do it very cheaply. Piezoenergy resulting from physical deformation of near-elastic crystals shows promise as energy source for self-powering of low energy consuming devices. This article discusses the possibility of using nanostructures of a very promising material, zinc oxide (ZnO), for energy generation. ZnO is a wide bandgapsemiconductor (3.37 eV) and the absence of a central symmetry in its crystal endows it with piezoelectric property. This material has been successfully used for energy generation and tapping schemes like solar cells, hydrogen generators and piezogenerators, among others.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Emanetoglu, N.W., Gorla, C., Liu, Y., Liang, S., Lu, Y.: Epitaxial ZnO piezoelectric thin films for saw filters. Mater. Sci. Semicond. Process. 2, 247–252 (1999)CrossRef Emanetoglu, N.W., Gorla, C., Liu, Y., Liang, S., Lu, Y.: Epitaxial ZnO piezoelectric thin films for saw filters. Mater. Sci. Semicond. Process. 2, 247–252 (1999)CrossRef
2.
Zurück zum Zitat Chen, Y., Bagnall, D., Yao, T.: ZnO as a novel photonic material for the UV region. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 75, 190–198 (2000)CrossRef Chen, Y., Bagnall, D., Yao, T.: ZnO as a novel photonic material for the UV region. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 75, 190–198 (2000)CrossRef
3.
Zurück zum Zitat Liang, S., Sheng, H., Liu, Y., Huo, Z., Lu, Y., Shen, H.: ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225, 110–113 (2001)CrossRef Liang, S., Sheng, H., Liu, Y., Huo, Z., Lu, Y., Shen, H.: ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225, 110–113 (2001)CrossRef
4.
Zurück zum Zitat Saito, N., Haneda, H., Sekiguchi, T., Ohashi, N., Sakaguchi, I., Koumoto, K.: Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers. Adv. Mater. 14, 418–420 (2002)CrossRef Saito, N., Haneda, H., Sekiguchi, T., Ohashi, N., Sakaguchi, I., Koumoto, K.: Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers. Adv. Mater. 14, 418–420 (2002)CrossRef
5.
Zurück zum Zitat Lee, J.Y., Choi, Y.S., Kim, J.H., Park, M.O., Im, S.: Optimizing n-ZnO/p-Si heterojunctions for photodiode applications. Thin Solid Films 403–404, 553–557 (2002)CrossRef Lee, J.Y., Choi, Y.S., Kim, J.H., Park, M.O., Im, S.: Optimizing n-ZnO/p-Si heterojunctions for photodiode applications. Thin Solid Films 403–404, 553–557 (2002)CrossRef
6.
Zurück zum Zitat Mitra, P., Chatterjee, A.P., Maiti, H.S.: ZnO thin film sensor. Mater. Lett. 35, 33–38 (1998)CrossRef Mitra, P., Chatterjee, A.P., Maiti, H.S.: ZnO thin film sensor. Mater. Lett. 35, 33–38 (1998)CrossRef
7.
Zurück zum Zitat Koch, M.H., Timbrell, P.Y., Lamb, R.N.: The influence of film crystallinity on the coupling efficiency of ZnO optical modulator waveguides. Semicond. Sci. Technol. 10, 1523–1527 (1995)CrossRef Koch, M.H., Timbrell, P.Y., Lamb, R.N.: The influence of film crystallinity on the coupling efficiency of ZnO optical modulator waveguides. Semicond. Sci. Technol. 10, 1523–1527 (1995)CrossRef
8.
Zurück zum Zitat Gratzel, M.: Dye-sensitized solid-state heterojunction solar cells. MRS Bull. 30, 23–27 (2005)CrossRef Gratzel, M.: Dye-sensitized solid-state heterojunction solar cells. MRS Bull. 30, 23–27 (2005)CrossRef
9.
Zurück zum Zitat Baxter, J.B., Walker, A.M., Van Ommering, K., Aydil, E.S.: Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology 17, (2006) Baxter, J.B., Walker, A.M., Van Ommering, K., Aydil, E.S.: Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology 17, (2006)
10.
Zurück zum Zitat Lin, Y., Zhang, Z., Tang, Z., Yuan, F., Li, J.: Characterisation of ZnO-based varistors prepared from nanometre precursor powders. Adv. Mater. Opt. Electron. 9, 205–209 (1999)CrossRef Lin, Y., Zhang, Z., Tang, Z., Yuan, F., Li, J.: Characterisation of ZnO-based varistors prepared from nanometre precursor powders. Adv. Mater. Opt. Electron. 9, 205–209 (1999)CrossRef
11.
Zurück zum Zitat Padmavathy, N., Vijayaraghavan, R.: Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9, (2008) Padmavathy, N., Vijayaraghavan, R.: Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9, (2008)
12.
Zurück zum Zitat Baruah, S., Thanachayanont, C., Dutta, J.: Growth of ZnO nanowires on nonwoven polyethylene fibers. Sci. Technol. Adv. Mater. 9, (2008) Baruah, S., Thanachayanont, C., Dutta, J.: Growth of ZnO nanowires on nonwoven polyethylene fibers. Sci. Technol. Adv. Mater. 9, (2008)
13.
Zurück zum Zitat Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, (2004) Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, (2004)
14.
Zurück zum Zitat Huang, Y., Zhang, Y., Bai, X., He, J., Liu, J., Zhang, X.: Bicrystalline zinc oxide nanocombs. J. Nanosci. Nanotechnol. 6, 2566–2570 (2006)CrossRef Huang, Y., Zhang, Y., Bai, X., He, J., Liu, J., Zhang, X.: Bicrystalline zinc oxide nanocombs. J. Nanosci. Nanotechnol. 6, 2566–2570 (2006)CrossRef
15.
Zurück zum Zitat Hughes, W.L., Wang, Z.L.: Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl. Phys. Lett. 86, (2005) Hughes, W.L., Wang, Z.L.: Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl. Phys. Lett. 86, (2005)
16.
Zurück zum Zitat Kong, X.Y., Wang, Z.L.: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625–1631 (2003)CrossRef Kong, X.Y., Wang, Z.L.: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625–1631 (2003)CrossRef
17.
Zurück zum Zitat Hughes, W.L., Wang, Z.L.: Formation of piezoelectric single-crystal nanorings and nanobows. J. Am. Chem. Soc. 126, 6703–6709 (2004)CrossRef Hughes, W.L., Wang, Z.L.: Formation of piezoelectric single-crystal nanorings and nanobows. J. Am. Chem. Soc. 126, 6703–6709 (2004)CrossRef
18.
Zurück zum Zitat Sun, T., Qui, J., Liang, C.: Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays. J. Phys. Chem. C 112, 715–721 (2008)CrossRef Sun, T., Qui, J., Liang, C.: Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays. J. Phys. Chem. C 112, 715–721 (2008)CrossRef
19.
Zurück zum Zitat Snure, M., Tiwari, A.: Synthesis, characterization, and green luminescence in ZnO nanocages. J. Nanosci. Nanotechnol. 7, 481–485 (2007)CrossRef Snure, M., Tiwari, A.: Synthesis, characterization, and green luminescence in ZnO nanocages. J. Nanosci. Nanotechnol. 7, 481–485 (2007)CrossRef
20.
Zurück zum Zitat Gratzel, M.: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem. 164, 3–14 (2004)CrossRef Gratzel, M.: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem. 164, 3–14 (2004)CrossRef
22.
Zurück zum Zitat Bora, T.: Studies on zinc oxide nanorod dye sensitized solar cell. Master thesis AIT (2009) Bora, T.: Studies on zinc oxide nanorod dye sensitized solar cell. Master thesis AIT (2009)
23.
Zurück zum Zitat Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Mller, E., Liska, P., Vlachopoulos, N., Grtzel, M.: Conversion of light to electricity by cis-X2bis(2,2-bipyridyl-4,4-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO\(_2\) electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993)CrossRef Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Mller, E., Liska, P., Vlachopoulos, N., Grtzel, M.: Conversion of light to electricity by cis-X2bis(2,2-bipyridyl-4,4-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO\(_2\) electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993)CrossRef
24.
Zurück zum Zitat Nazeeruddin, M.K., Humphry-Baker, R., Liska, P., Grtzel, M.: Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO\(_2\) solar cell. J. Phys. Chem. B 107, 8981–8987 (2003)CrossRef Nazeeruddin, M.K., Humphry-Baker, R., Liska, P., Grtzel, M.: Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO\(_2\) solar cell. J. Phys. Chem. B 107, 8981–8987 (2003)CrossRef
25.
Zurück zum Zitat Aiga, F., Tada, T.: Molecular and electronic structures of black dye; an efficient sensitizing dye for nanocrystalline TiO\(_2\) solar cells. J. Mol. Struct. 658, 25–32 (2003)CrossRef Aiga, F., Tada, T.: Molecular and electronic structures of black dye; an efficient sensitizing dye for nanocrystalline TiO\(_2\) solar cells. J. Mol. Struct. 658, 25–32 (2003)CrossRef
26.
Zurück zum Zitat Hagberg, D.P., Edvinsson, T., Marinado, T., Boschloo, G., Hagfeldt, A., Sun, L.: A novel organic chromophore for dye-sensitized nanostructured solar cells. In: Chemical Communications, pp. 2245–2247 (2006) Hagberg, D.P., Edvinsson, T., Marinado, T., Boschloo, G., Hagfeldt, A., Sun, L.: A novel organic chromophore for dye-sensitized nanostructured solar cells. In: Chemical Communications, pp. 2245–2247 (2006)
27.
Zurück zum Zitat Ito, S., Zakeeruddin, S.M., Humphry-Baker, R., Liska, P., Charvet, R., Comte, P., Nazeeruddin, M.K., Pchy, P., Takata, M., Miura, H., Uchida, S., Grtzel, M.: High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv. Mater. 18, 1202–1205 (2006)CrossRef Ito, S., Zakeeruddin, S.M., Humphry-Baker, R., Liska, P., Charvet, R., Comte, P., Nazeeruddin, M.K., Pchy, P., Takata, M., Miura, H., Uchida, S., Grtzel, M.: High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv. Mater. 18, 1202–1205 (2006)CrossRef
28.
Zurück zum Zitat Suri, P., Mehra, R.M.: Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell. Sol. Ener. Mater. Sol. Cells 91, 518–524 (2007)CrossRef Suri, P., Mehra, R.M.: Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell. Sol. Ener. Mater. Sol. Cells 91, 518–524 (2007)CrossRef
29.
Zurück zum Zitat Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)CrossRef Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)CrossRef
30.
Zurück zum Zitat Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R., Choi, H.J.: Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12, 323–331 (2002)CrossRef Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R., Choi, H.J.: Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12, 323–331 (2002)CrossRef
31.
Zurück zum Zitat Xia, J.B., Zhang, X.W.: Electronic structure of ZnO Wurtzite quantum wires. Eur. Phys. J. B 49, 415–420 (2006)CrossRef Xia, J.B., Zhang, X.W.: Electronic structure of ZnO Wurtzite quantum wires. Eur. Phys. J. B 49, 415–420 (2006)CrossRef
32.
Zurück zum Zitat Quintana, M., Edvinsson, T., Hagfeldt, A., Boschloo, G.: Comparison of dye-sensitized ZnO and TiO\(_2\) solar cells: studies of charge transport and carrier lifetime. J. Phys. Chem. C 111, 1035–1041 (2007)CrossRef Quintana, M., Edvinsson, T., Hagfeldt, A., Boschloo, G.: Comparison of dye-sensitized ZnO and TiO\(_2\) solar cells: studies of charge transport and carrier lifetime. J. Phys. Chem. C 111, 1035–1041 (2007)CrossRef
33.
Zurück zum Zitat Akhtar, M.S., Khan, M.A., Jeon, M.S., Yang, O.B.: Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochim. Acta 53, 7869–7874 (2008)CrossRef Akhtar, M.S., Khan, M.A., Jeon, M.S., Yang, O.B.: Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochim. Acta 53, 7869–7874 (2008)CrossRef
34.
Zurück zum Zitat Pradhan, B., Batabyal, S.K., Pal, A.J.: Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91, 769–773 (2007)CrossRef Pradhan, B., Batabyal, S.K., Pal, A.J.: Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91, 769–773 (2007)CrossRef
35.
Zurück zum Zitat Chen, J., Li, C., Song, J.L., Sun, X.W., Lei, W., Deng, W.Q.: Bilayer ZnO nanostructure fabricated by chemical bath and its application in quantum dot sensitized solar cell. Appl. Surf. Sci. 255, 7508–7511 (2009)CrossRef Chen, J., Li, C., Song, J.L., Sun, X.W., Lei, W., Deng, W.Q.: Bilayer ZnO nanostructure fabricated by chemical bath and its application in quantum dot sensitized solar cell. Appl. Surf. Sci. 255, 7508–7511 (2009)CrossRef
36.
Zurück zum Zitat Baxter, J.B., Aydil, E.S.: Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol. Energy Mater. Sol. Cells 90, 607–622 (2006)CrossRef Baxter, J.B., Aydil, E.S.: Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol. Energy Mater. Sol. Cells 90, 607–622 (2006)CrossRef
37.
Zurück zum Zitat Gerischer, H., Tributsch, H.: Ber. Bunsen-Ges. Phys. Chem. 73, 850–854 (1969) Gerischer, H., Tributsch, H.: Ber. Bunsen-Ges. Phys. Chem. 73, 850–854 (1969)
38.
Zurück zum Zitat Matsumura, M., Matsudaira, S., Tsubomura, H., Takata, M., Yanagida, H.: Dye sensitization and surface structures of semiconductor electrodes. Ind. Eng. Chem. Prod. Res. Dev. 19, 415–421 (1980)CrossRef Matsumura, M., Matsudaira, S., Tsubomura, H., Takata, M., Yanagida, H.: Dye sensitization and surface structures of semiconductor electrodes. Ind. Eng. Chem. Prod. Res. Dev. 19, 415–421 (1980)CrossRef
39.
Zurück zum Zitat Boschloo, G., Edvinsson, T., Hagfeldt, A.: Dye-sensitized nanostructured ZnO Electrodes for solar cell applications. In: Nanostructured Materials for Solar Energy Conversion, pp. 227–254 (2007) Boschloo, G., Edvinsson, T., Hagfeldt, A.: Dye-sensitized nanostructured ZnO Electrodes for solar cell applications. In: Nanostructured Materials for Solar Energy Conversion, pp. 227–254 (2007)
40.
Zurück zum Zitat Ku, C.H., Wu, J.J.: Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology 18 (2007) Ku, C.H., Wu, J.J.: Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology 18 (2007)
41.
Zurück zum Zitat Keis, K., Bauer, C., Boschloo, G., Hagfeldt, A., Westermark, K., Rensmo, H., Siegbahn, H.: Nanostructured ZnO electrodes for dye-sensitized solar cell applications. J. Photochem. Photobiol. A: Chem. 148, 57–64 (2002)CrossRef Keis, K., Bauer, C., Boschloo, G., Hagfeldt, A., Westermark, K., Rensmo, H., Siegbahn, H.: Nanostructured ZnO electrodes for dye-sensitized solar cell applications. J. Photochem. Photobiol. A: Chem. 148, 57–64 (2002)CrossRef
42.
Zurück zum Zitat Baruah, S., Dutta, J.: Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009)CrossRef Baruah, S., Dutta, J.: Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009)CrossRef
43.
Zurück zum Zitat Makhal, A., Sarkar, S., Bora, T., Baruah, S., Dutta, J., Raychaudhuri, A.K., Pal, S.K.: Role of resonance energy transfer in light harvesting of zinc oxide-based dye-sensitized solar cells. J. Phys. Chem. C 114, 10390–10395 Makhal, A., Sarkar, S., Bora, T., Baruah, S., Dutta, J., Raychaudhuri, A.K., Pal, S.K.: Role of resonance energy transfer in light harvesting of zinc oxide-based dye-sensitized solar cells. J. Phys. Chem. C 114, 10390–10395
44.
Zurück zum Zitat Desai, A.V., Haque, M.A.: Mechanical properties of ZnO nanowires. Sens. Actuators 134, 169–174 (2007)CrossRef Desai, A.V., Haque, M.A.: Mechanical properties of ZnO nanowires. Sens. Actuators 134, 169–174 (2007)CrossRef
45.
Zurück zum Zitat Kou L.Z., Guo, W.L., Li, C.: In: Proceedings of IEEE Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, pp. 354–359 (2008) Kou L.Z., Guo, W.L., Li, C.: In: Proceedings of IEEE Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, pp. 354–359 (2008)
46.
Zurück zum Zitat Song, J.H., Zhou, J., Liu, J., Wang, Z.L.: Nano Lett. 6, 1652–1656 (2006)CrossRef Song, J.H., Zhou, J., Liu, J., Wang, Z.L.: Nano Lett. 6, 1652–1656 (2006)CrossRef
48.
Zurück zum Zitat Hutson, A.R., White, D.L.: Elastic wave propagation in piezoelectric semiconductors. J. Appl. Phys. 33, 40–47 (1962)CrossRef Hutson, A.R., White, D.L.: Elastic wave propagation in piezoelectric semiconductors. J. Appl. Phys. 33, 40–47 (1962)CrossRef
49.
Zurück zum Zitat Corso, A.D., Pastemak, M., Resta, R., Balderschi, A.: Phys. Rev. B 50, 10715–10721 (1994)CrossRef Corso, A.D., Pastemak, M., Resta, R., Balderschi, A.: Phys. Rev. B 50, 10715–10721 (1994)CrossRef
50.
51.
52.
Zurück zum Zitat Mantini, G., Gao, Y., DAmico, A., Falconi, C., Wang, Z.L.: Nano Res. 2, 624–629 (2009) Mantini, G., Gao, Y., DAmico, A., Falconi, C., Wang, Z.L.: Nano Res. 2, 624–629 (2009)
53.
Zurück zum Zitat Mantini, G., Gao, Y., Wang, D.Z.L., Falconi, A.C.: Procedia Chem. 1, 1403–1406 (2009) Mantini, G., Gao, Y., Wang, D.Z.L., Falconi, A.C.: Procedia Chem. 1, 1403–1406 (2009)
56.
Zurück zum Zitat Xu, F., Qin, Q., Mishra, A., Gu, Y., Zhu, Y.N.R.: Nano Res. 3, 271–280 (2010)CrossRef Xu, F., Qin, Q., Mishra, A., Gu, Y., Zhu, Y.N.R.: Nano Res. 3, 271–280 (2010)CrossRef
57.
Zurück zum Zitat Park, W.I., Yi, G.C., Kim, J.W., Park, S.M.: Appl. Phys. Lett. 82, 4358–4360 (2003)CrossRef Park, W.I., Yi, G.C., Kim, J.W., Park, S.M.: Appl. Phys. Lett. 82, 4358–4360 (2003)CrossRef
58.
Zurück zum Zitat Park, W.I., Yi, G.C.: Ohmic and Schottky nanocontacts. In: IEEE Proceedings, pp. 410–414 (2003) Park, W.I., Yi, G.C.: Ohmic and Schottky nanocontacts. In: IEEE Proceedings, pp. 410–414 (2003)
59.
Zurück zum Zitat Wang, X., Song, J., Liu, J., Wang, Z.L.S.: Science 316, 102–105 (2007) Wang, X., Song, J., Liu, J., Wang, Z.L.S.: Science 316, 102–105 (2007)
60.
61.
Zurück zum Zitat Xu, Q.Y.S., Xu, C., Wei, Y., Yang, R., Wang, Z.L.N.N.: Nat. Nanotechnol. 5, 366–373 (2010)CrossRef Xu, Q.Y.S., Xu, C., Wei, Y., Yang, R., Wang, Z.L.N.N.: Nat. Nanotechnol. 5, 366–373 (2010)CrossRef
Metadaten
Titel
ZnO Nanostructures for Alternate Energy Generation
verfasst von
Sunandan Baruah
Copyright-Jahr
2015
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-2464-8_3

Neuer Inhalt