Skip to main content
Erschienen in: Zeitschrift für Energiewirtschaft 4/2014

01.12.2014

A Note on the Inefficiency of Technology- and Region-Specific Renewable Energy Support: The German Case

verfasst von: Cosima Jägemann

Erschienen in: Zeitschrift für Energiewirtschaft | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Renewable energy (RES-E) support schemes have to meet two requirements in order to lead to a cost-efficient renewable energy mix. First, RES-E support schemes need to expose RES-E producers to the price signal of the wholesale market, which incentivizes investors to account not only for the marginal costs per kWh (\(\overline{MC}\)) but also for the marginal value per kWh (\(\overline{MV^{el}}\)) of renewable energy technologies. Second, RES-E support schemes need to be technology- and region-neutral in their design (rather than technology- and region-specific). That is, the financial support may not be bound to a specific technology or a specific region. In Germany, however, wind and solar power generation is currently incentivized via technology- and region-specific feed-in tariffs (FIT), which are coupled with capacity support limits. As such, the current RES-E support scheme in Germany fails to expose wind and solar power producers to the price signal of the wholesale market. Moreover, it is technology- and region-specific in its design, i.e., the support level for each kWh differs between wind and solar power technologies and the location of their deployment (at least for onshore wind power). As a consequence, excess costs occur which are burdened by society. This paper illustrates the economic consequences associated with Germany’s technology- and region-specific renewable energy support by applying a linear electricity system optimization model. Overall, excess costs are found to amount to more than 6.6 Bn Euro \(_{2010}\). These are driven by comparatively high net marginal costs of offshore wind and solar power in comparison to onshore wind power in Germany up to 2020.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Zeitschrift für Energiewirtschaft

Zeitschrift für Energiewirtschaft (ZfE) ist eine unabhängige Fachzeitschrift mit aktuellen Themen zu Energiewirtschaft, Energiepolitik und Energierecht. JETZT BESTELLEN

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This is based on the assumption of imperfect information on the side of the government regarding the MC and \(MV^{el}\) of alternative technologies and regions, which prohibits the government to implement technology- and region-specific support schemes that lead to the cost-efficient renewable energy mix.
 
2
By the end of 2013, 32 GW of onshore wind power was installed in Germany (ISE 2014).
 
3
As explained, for example, in (Deutsche Bank 2012), all onshore wind projects currently receive the same FIT level (initial payment) for the first 5 years of operation. Afterwards, sites with highest full load hours (FLH) are paid a lower FIT level for the remaining 15 years of the contract (base payment). Sites with lower FLH, in contrast, are paid the initial payment for a longer period of time before they decline to the base payment. The period for which wind turbines receive the initial payment is determined by comparing each project’s FLH against a benchmark for the annual output (i.e., a reference yield).
 
4
The term ‘technology- and region-neutral’ indicates that each kWh of renewable electricity produced contributes to achieving the RES-E target irrespective of the technology or the region of its deployment.
 
5
The unit textrmC-kWh is derived by dividing the NMC/MC/\(MV^{el}\) by the accumulated full load hours over all years of the unit’s technical lifetime.
 
6
The assumption that the \(\overline{MC}\) are independent of the respective technology’s penetration level implies that no space potential restrictions are binding, i.e., that favorable locations with high full load hours (FLH) are not limited. If, however, locations with high FLH are limited, the \(\overline{MC}\) would increase as the penetration increases since wind turbines/solar power system would need to be deployed at locations with lower FLH.
 
7
Hence, all renewable energy capacity expansions after 2011 are endogenously determined by the model and do not necessarily correspond to the (real-world) capacity expansions actually realized in 2012 and 2013.
 
8
Overall, we model Germany, Austria, France and the Netherlands. Given limited computational resources, there is a trade-off between manageable calculation times on the one hand side and a high regional and temporal resolution on the other hand side. For the analysis of the marginal value of renewables, a high temporal resolution—which captures the fluctuating characteristic of wind and solar power supply—was considered more important than modeling a large number of countries (see Sect. 3.1.3).
 
9
The wind and solar power generation profiles are based on historical hourly meteorological wind speed and solar radiation data from (EuroWind 2011).
 
10
The model’s optimization premise (minimization of accumulated discounted total system costs) implies a cost-based competition of electricity generation and perfect foresight.
 
11
The approach of modeling a quantity-based regulation (\(\textrm{CO}_2\) cap) rather than a price-based regulation (\(\textrm{CO}_2\) price) ensures that the \(\textrm{CO}_2\) emissions reduction target is met in all scenarios simulated, which allows the results to be compared to one another. It reflects the market outcome of a \(\textrm{CO}_2\) cap-and-trade system.
 
12
The security of supply constraint prescribes that the peak demand level is met by securely available capacities. Whereas the securely available capacity of dispatchable power plants within the peak-demand hour is assumed to correspond to their seasonal availability, the securely available capacity of fluctuating wind and solar power plants within the peak-demand hour is assumed to amount to the unit’s capacity credit, which typically varies between 0 and 10 % (e.g., Jägemann et al. b).
 
13
For example, the model applied in Jägemann et al. (2013a, b) accounts for a peak capacity constraint as it simulates the dispatch of only 4 and 8 typical days, respectively.
 
14
We note that the objective of the model is to minimize accumulated discounted total system costs.
 
15
We note that under a technology- and region-neutral renewable energy RES-E target, the marginal of the technology- and region-neutral renewable energy constraint (Eq. (16)) corresponds to the \(\overline{NMC}\). Equally, under a technology- and region-specific RES-E target, the marginal of the technology- and region-specific renewable energy constraint (Eq. (18)) corresponds to the \(\overline{NMC}\) of the respective RES-E technology deployed in the respective subregion.
 
16
The technical lifetime of both wind and solar power capacities is assumed to amount to 20 years in this analysis.
 
17
The increase in the short-run marginal costs of power production of fossil-fuel fired (\(\textrm{CO}_2\)-emitting) power plants arises from incorporating the costs of emitting \(\textrm{CO}_2\), reflected by the price of \(\textrm{CO}_2\) emission certificates.
 
18
We note that the modeled technology- and region-neutral RES-E targets for 2025 (40 %) and 2035 (55 %) (see Table 5) cover wind and solar power generation only. This reflects the assumption that wind and solar power are expected to account for the largest share of renewable energy capacity additions up to 2035, given the limited potentials for hydro power and low-cost biomass resources in generating electricity. Moreover, we note that the modeled RES-E targets (40 % in 2025 and 55 % in 2035) are related to the net electricity demand, while the German RES-E targets for 2025 (40–45 %) and 2035 (55–60 %) are related to the gross electricity consumption (CDU/CSU/SPD 2013).
 
19
The TWh targets are derived by multiplying the 2020 capacity targets for solar power (52 GW), onshore wind power (50 GW) and offshore wind power (6.5 GW) with the full load hours assumed in the model; see also Table 9 of the Appendix.
 
20
Note that the \(\overline{MV^{el}}\) of a specific technology varies between the two regions because of both differences in the level of full load hours and differences in the production factor profile.
 
21
The development of the capacity and generation mix up to 2050 is shown in Fig. 7 of the Appendix.
 
22
We note that the nuclear capacities are exogenously decommissioned in the model by 2022 reflecting current legislation in Germany.
 
23
Lamont (2008) applies an illustrative optimization model to determine the cost-efficient capacity mix for five technologies (baseload, intermediate and peaking generators along with wind and solar power) using a greenfield approach to examine the effects of increased wind and solar power penetration.
 
24
Between 2020 and 2050, solar power and offshore wind power investment costs are assumed to decrease by 31 and 38 %, respectively, while onshore wind power investment costs are assumed to decrease by only 11 %.
 
25
The amount of wind and solar power curtailment in GWh is shown in Table 17 of the Appendix.
 
26
See Table 1 and Fig. 3.
 
27
We note that all wind turbines within a region are assumed to have the same production factor profile.
 
28
The potential FLH of onshore wind power plants in southern Germany are assumed to be more than 5 % lower than the potential FLH of onshore wind power in southern Germany.
 
Literatur
Zurück zum Zitat Agora Energiewende (2013) Studie zum kostenoptimalen Ausbau der Erneuerbaren Energien. Hintergrunddokument zu Kostenannahmen der Erneuerbaren. Tech. rep Agora Energiewende (2013) Studie zum kostenoptimalen Ausbau der Erneuerbaren Energien. Hintergrunddokument zu Kostenannahmen der Erneuerbaren. Tech. rep
Zurück zum Zitat BMU (2014) Eckpunkte für die Reform des EEG. Tech. rep., Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety BMU (2014) Eckpunkte für die Reform des EEG. Tech. rep., Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety
Zurück zum Zitat CDU/CSU/SPD (2013) Deutschlands Zukunft gestalten. Koalitionsvertrag zwischen CDU, CSU und SPD. 18. Legislaturperiode. Tech. rep. https://www.cdu.de/sites/default/files/media/dokumente/koalitionsvertrag.pdf CDU/CSU/SPD (2013) Deutschlands Zukunft gestalten. Koalitionsvertrag zwischen CDU, CSU und SPD. 18. Legislaturperiode. Tech. rep. https://​www.​cdu.​de/​sites/​default/​files/​media/​dokumente/​koalitionsvertra​g.​pdf
Zurück zum Zitat Deutsche Bank (2012) The German feed-in tariff: Recent policy changes. Tech. rep., Deutsche Bank. https://www.db.com/cr/en/docs/German_FIT_Update_2012.pdf Deutsche Bank (2012) The German feed-in tariff: Recent policy changes. Tech. rep., Deutsche Bank. https://​www.​db.​com/​cr/​en/​docs/​German_​FIT_​Update_​2012.​pdf
Zurück zum Zitat ENSTO-E, 2013. Hourly load values for all countries for a specific month. https://www.entsoe.eu/data/data-portal/consumption/ ENSTO-E, 2013. Hourly load values for all countries for a specific month. https://​www.​entsoe.​eu/​data/​data-portal/​consumption/​
Zurück zum Zitat ENTSO-E (2012). 10-Year Network Development Plan ENTSO-E (2012). 10-Year Network Development Plan
Zurück zum Zitat ENTSO-E (February 2014) Monthly consumption of all countries for a specific year (2012). https://www.entsoe.eu/db-query/consumption/monthly-consumption-of-all-countries-for-a-specific-year/ ENTSO-E (February 2014) Monthly consumption of all countries for a specific year (2012). https://​www.​entsoe.​eu/​db-query/​consumption/​monthly-consumption-of-all-countries-for-a-specific-year/​
Zurück zum Zitat EU Council (October 2009) Brussels European Council 29/30 OCTOBER 2009 - Presidency Conclusions. Council of the European Union EU Council (October 2009) Brussels European Council 29/30 OCTOBER 2009 - Presidency Conclusions. Council of the European Union
Zurück zum Zitat EuroWind (2011) Database for hourly wind speeds and solar radiation from 2006–2010 (not public) EuroWind (2011) Database for hourly wind speeds and solar radiation from 2006–2010 (not public)
Zurück zum Zitat EWI (2010) European RES-E policy analysis - a model based analysis of RES-E deployment and its impact on the conventional power markt. M. Fürsch and C. Golling and M. Nicolosi and R. Wissen and D. Lindenberger (Institute of Energy Economics at the University of Cologne) EWI (2010) European RES-E policy analysis - a model based analysis of RES-E deployment and its impact on the conventional power markt. M. Fürsch and C. Golling and M. Nicolosi and R. Wissen and D. Lindenberger (Institute of Energy Economics at the University of Cologne)
Zurück zum Zitat EWI (2011) Roadmap 2050 - a closer look. Cost-efficient RES-E penetration and the role of grid extensions. M. Fürsch, S. Hagspiel, C. Jägemann, S. Nagl and D. Lindenberger. Institute of Energy Economics at the University of Cologne EWI (2011) Roadmap 2050 - a closer look. Cost-efficient RES-E penetration and the role of grid extensions. M. Fürsch, S. Hagspiel, C. Jägemann, S. Nagl and D. Lindenberger. Institute of Energy Economics at the University of Cologne
Zurück zum Zitat Frontier Economics (2012) Die Zukunft des EEG - Handlungsoptionen und Reformansätze. Bericht für die ENBW Energie Baden-Würtemberg AG. Tech. rep., Frontier Economics Frontier Economics (2012) Die Zukunft des EEG - Handlungsoptionen und Reformansätze. Bericht für die ENBW Energie Baden-Würtemberg AG. Tech. rep., Frontier Economics
Zurück zum Zitat Fürsch M, Hagspiel S, Jägemann C, Nagl S, Lindenberger D, Tröster E (2013) The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050. Appl Energy 104:642–652 Fürsch M, Hagspiel S, Jägemann C, Nagl S, Lindenberger D, Tröster E (2013) The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050. Appl Energy 104:642–652
Zurück zum Zitat IEA (2010a) Technology roadmap - concentrating solar power. International Energy Agency. www.iea.org/papers/2010/ IEA (2010a) Technology roadmap - concentrating solar power. International Energy Agency. www.​iea.​org/papers/2010/
Zurück zum Zitat IEA (2010b) World Energy Outlook 2010. International Energy Agency IEA (2010b) World Energy Outlook 2010. International Energy Agency
Zurück zum Zitat IEA (2011) World Energy Outlook 2011. International Energy Agency IEA (2011) World Energy Outlook 2011. International Energy Agency
Zurück zum Zitat ISE (2013) Stromgestehungskosten für Erneuerbare Energien. Tech. rep., Fraunhofer-Institut für solare Energiesysteme ISE (2013) Stromgestehungskosten für Erneuerbare Energien. Tech. rep., Fraunhofer-Institut für solare Energiesysteme
Zurück zum Zitat ISE (2014) Stromerzeugung aus Solar- und Windenergie im Jahr 2013. Tech. rep., Fraunhofer-Institut für solare Energiesysteme ISE ISE (2014) Stromerzeugung aus Solar- und Windenergie im Jahr 2013. Tech. rep., Fraunhofer-Institut für solare Energiesysteme ISE
Zurück zum Zitat Jägemann C (2014) An illustrative note on the system price effect of wind and solar power - The German case. Institute of Energy Economics at the University of Cologne Working Paper No 14/10 Jägemann C (2014) An illustrative note on the system price effect of wind and solar power - The German case. Institute of Energy Economics at the University of Cologne Working Paper No 14/10
Zurück zum Zitat Jägemann C, Fürsch M, Hagspiel S, Nagl S (2013a) Decarbonizing Europe’s power sector by 2050 - analyzing the economic implications of alternative decarbonization pathways. Energy Econ 40:622–636 Jägemann C, Fürsch M, Hagspiel S, Nagl S (2013a) Decarbonizing Europe’s power sector by 2050 - analyzing the economic implications of alternative decarbonization pathways. Energy Econ 40:622–636
Zurück zum Zitat Jägemann C, Hagspiel S, Lindenberger D (2013b) The economic inefficiency of grid parity: the case of German photovoltaic. Institute of Energy Economics at the University of Cologne Working Paper No 13/19 Jägemann C, Hagspiel S, Lindenberger D (2013b) The economic inefficiency of grid parity: the case of German photovoltaic. Institute of Energy Economics at the University of Cologne Working Paper No 13/19
Zurück zum Zitat Joskow PL (2011) Comparing the costs of intermittent and dispatchable electricity generating technologies. Amer Econ Rev 100(3):238–241 Joskow PL (2011) Comparing the costs of intermittent and dispatchable electricity generating technologies. Amer Econ Rev 100(3):238–241
Zurück zum Zitat Klessmann C, Nabe C, Burges K (2008) Pros and cons of exposing renewables to electricity market risks - a comparison of the market integration approaches in Germany, Spain, and the UK. Energy Policy 36:3646–3661 Klessmann C, Nabe C, Burges K (2008) Pros and cons of exposing renewables to electricity market risks - a comparison of the market integration approaches in Germany, Spain, and the UK. Energy Policy 36:3646–3661
Zurück zum Zitat Lamont AD (2008) Assessing the long-term system value of intermittent electric generation technologies. Energy Econ 30:1208–1231 Lamont AD (2008) Assessing the long-term system value of intermittent electric generation technologies. Energy Econ 30:1208–1231
Zurück zum Zitat Mitchell C, Bauknecht D, Connor PM (2006) Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany. Energy Policy 34:297–305 Mitchell C, Bauknecht D, Connor PM (2006) Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany. Energy Policy 34:297–305
Zurück zum Zitat Nagl S, Fürsch M, Jägemann C, Bettzüge M (2011) The economic value of storage in renewable power systems - the case of thermal energy storage in concentrating solar plants. Institute of Energy Economics at the University of Cologne Working Paper No 11/08 Nagl S, Fürsch M, Jägemann C, Bettzüge M (2011) The economic value of storage in renewable power systems - the case of thermal energy storage in concentrating solar plants. Institute of Energy Economics at the University of Cologne Working Paper No 11/08
Zurück zum Zitat Nagl S, Fürsch M, Lindenberger D (2013) The costs of electricity systems with a high share of fluctuating renewables - a stochastic investment and dispatch optimization model for Europe. The Energy Journal 34:151–179 Nagl S, Fürsch M, Lindenberger D (2013) The costs of electricity systems with a high share of fluctuating renewables - a stochastic investment and dispatch optimization model for Europe. The Energy Journal 34:151–179
Zurück zum Zitat PROGNOS/EWI/GWS (2010) Energieszenarien für ein Energiekonzept der Bundesregierung. Schlesinger and P.Hofer and A. Kemmler and A. Kirchner and S. Strassburg (all Prognos AG); D. Lindenberger and M. Fürsch and S. Nagl and M. Paulus and J. Richter and J. Trüby (all Institute of Energy Economics at the University of Cologne); C. Lutz and O. Khorushun and U. Lehr and I. Thobe (all GWS mbH) PROGNOS/EWI/GWS (2010) Energieszenarien für ein Energiekonzept der Bundesregierung. Schlesinger and P.Hofer and A. Kemmler and A. Kirchner and S. Strassburg (all Prognos AG); D. Lindenberger and M. Fürsch and S. Nagl and M. Paulus and J. Richter and J. Trüby (all Institute of Energy Economics at the University of Cologne); C. Lutz and O. Khorushun and U. Lehr and I. Thobe (all GWS mbH)
Zurück zum Zitat The Crown Estate (June 2012) Offshore wind cost reduction pathways study The Crown Estate (June 2012) Offshore wind cost reduction pathways study
Metadaten
Titel
A Note on the Inefficiency of Technology- and Region-Specific Renewable Energy Support: The German Case
verfasst von
Cosima Jägemann
Publikationsdatum
01.12.2014
Verlag
Springer Fachmedien Wiesbaden
Erschienen in
Zeitschrift für Energiewirtschaft / Ausgabe 4/2014
Print ISSN: 0343-5377
Elektronische ISSN: 1866-2765
DOI
https://doi.org/10.1007/s12398-014-0139-7

Weitere Artikel der Ausgabe 4/2014

Zeitschrift für Energiewirtschaft 4/2014 Zur Ausgabe