Skip to main content

2016 | OriginalPaper | Buchkapitel

3. Effect of Salinity and Pressure on the Rate of Mass Transfer in Aquifer Storage of Carbon Dioxide

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The growing concern about global warming has increased interest in improving the technology for the geological storage of carbon dioxide (CO2) in aquifers. One issue is the limited storage space for carbon dioxide. Part of the storage space is in a gas tongue overlaying the aquifer. However, more storage space is available in aquifer. Storage in the aquifer has the advantage that the partial molar volume of dissolved carbon dioxide is about twice as small as the partial molar volume of the gas phase under optimal conditions. One important aspect for aquifer storage is the rate of transfer between the overlying gas layer and the aquifer below. It is generally accepted that density driven natural convection is an important mechanism that enhances the mass transfer rate. The density effects occur because water with dissolved carbon dioxide has a higher density than fresh water or brine. There is a lack of experimental work that study the transfer rate into water saturated porous medium at in situ conditions, i.e., above critical temperatures and at pressures above 60 bar. Representative natural convection experiments require relatively large volumes (e.g., a diameter 8.5 cm and a length of 23 cm). We studied the transfer rate experimentally for both fresh water and brine (2.5, 5 and 10 w/w %). The experiment uses a high pressure ISCO pump to keep the pressure constant and allows determining the corresponding injection rate and cumulative injected volume. To our knowledge this is the first transfer experiments at constant pressure. A log-log plot reveals that the mass transfer rate is proportional to t0.8, and thus much faster than the predicted by Fick’s law in the absence of natural convection currents. Moreover, the experiments show that natural convection currents are weakest in highly concentrated brine and strongest in pure water.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat International Energy Agency, World Energy Outlook 2012, 2012, OECD Publishing. International Energy Agency, World Energy Outlook 2012, 2012, OECD Publishing.
2.
Zurück zum Zitat Iijima, M., Nagayasu, T., Kamijyo, T., & Nakatani, S. (2011). MHI’s energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review, 48(1), 26. Iijima, M., Nagayasu, T., Kamijyo, T., & Nakatani, S. (2011). MHI’s energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review, 48(1), 26.
3.
Zurück zum Zitat Tao, Z., & Clarens, A. (2013). Estimating the carbon sequestration capacity of shale formations using Methane production rates. Environmental Science and Technology, 47(19), 11318–11325.CrossRef Tao, Z., & Clarens, A. (2013). Estimating the carbon sequestration capacity of shale formations using Methane production rates. Environmental Science and Technology, 47(19), 11318–11325.CrossRef
4.
Zurück zum Zitat Eftekhari, A. A., Van Der Kooi, H., & Bruining, H. (2012). Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy, 45(1), 729–745.CrossRef Eftekhari, A. A., Van Der Kooi, H., & Bruining, H. (2012). Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy, 45(1), 729–745.CrossRef
5.
Zurück zum Zitat Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S., & Aiken, T. (2010). Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations. International Journal of Greenhouse Gas Control, 4(4), 659–667.CrossRef Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S., & Aiken, T. (2010). Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations. International Journal of Greenhouse Gas Control, 4(4), 659–667.CrossRef
6.
Zurück zum Zitat Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations. Computational Geosciences, 13(4), 409–434.CrossRefMATH Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations. Computational Geosciences, 13(4), 409–434.CrossRefMATH
7.
Zurück zum Zitat Celia, M. A., Bachu, S., Nordbotten, J. M., Gasda, S. E., & Dahle, H. K. (2004). Quantitative estimation of CO2 leakage from geological storage: Analytical models, numerical models and data needs. In Proceedings of 7th International Conference on Greenhouse Gas Control Technologies.(GHGT-7). Celia, M. A., Bachu, S., Nordbotten, J. M., Gasda, S. E., & Dahle, H. K. (2004). Quantitative estimation of CO2 leakage from geological storage: Analytical models, numerical models and data needs. In Proceedings of 7th International Conference on Greenhouse Gas Control Technologies.(GHGT-7).
8.
Zurück zum Zitat Van der Meer, L. (1992). Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands. Energy Conversion and Management, 33(5), 611–618.CrossRef Van der Meer, L. (1992). Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands. Energy Conversion and Management, 33(5), 611–618.CrossRef
9.
Zurück zum Zitat Gmelin, L. (1973). Gmelin Handbuch der anorganischen Chemie, 8. Auflage. Kohlenstoff, Teil C3, Verbindungen. ISBN 3-527-81419-1. Gmelin, L. (1973). Gmelin Handbuch der anorganischen Chemie, 8. Auflage. Kohlenstoff, Teil C3, Verbindungen. ISBN 3-527-81419-1.
10.
Zurück zum Zitat Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.CrossRef Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.CrossRef
11.
Zurück zum Zitat Elder, J. (1968). The unstable thermal interface. Journal of Fluid Mechanics, 32(1), 69–96.CrossRef Elder, J. (1968). The unstable thermal interface. Journal of Fluid Mechanics, 32(1), 69–96.CrossRef
12.
Zurück zum Zitat Ennis-King, J., Preston, I., Paterson, L. (2005). Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Physics of Fluids, 17(8), 084107–084107-15. Ennis-King, J., Preston, I., Paterson, L. (2005). Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Physics of Fluids, 17(8), 084107–084107-15.
13.
Zurück zum Zitat Foster, T. D. (1965). Onset of convection in a layer of fluid cooled from above. Physics of Fluids, 8, 1770.CrossRef Foster, T. D. (1965). Onset of convection in a layer of fluid cooled from above. Physics of Fluids, 8, 1770.CrossRef
15.
Zurück zum Zitat Nordbotten, J. M., & Celia, M. A. Geological Storage of CO 2 : Modeling Approaches for Large-Scale Simulation2011: Wiley. com. Nordbotten, J. M., & Celia, M. A. Geological Storage of CO 2 : Modeling Approaches for Large-Scale Simulation2011: Wiley. com.
16.
Zurück zum Zitat Nordbotten, J. M., Celia, M. A., & Bachu, S. (2005). Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transport in Porous Media, 58(3), 339–360.CrossRef Nordbotten, J. M., Celia, M. A., & Bachu, S. (2005). Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transport in Porous Media, 58(3), 339–360.CrossRef
17.
Zurück zum Zitat Ranganathan, P., Farajzadeh, R., Bruining, H., & Zitha, P. L. (2012). Numerical simulation of natural convection in heterogeneous porous media for CO2 geological storage. Transport in Porous Media, 95(1), 25–54.CrossRef Ranganathan, P., Farajzadeh, R., Bruining, H., & Zitha, P. L. (2012). Numerical simulation of natural convection in heterogeneous porous media for CO2 geological storage. Transport in Porous Media, 95(1), 25–54.CrossRef
18.
Zurück zum Zitat Riaz, A., Hesse, M., Tchelepi, H., & Orr, F. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics, 548, 87–111.MathSciNetCrossRef Riaz, A., Hesse, M., Tchelepi, H., & Orr, F. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics, 548, 87–111.MathSciNetCrossRef
19.
Zurück zum Zitat Walker, K. L., & Homsy, G. M. (1978). Convection in a porous cavity. Journal of Fluid Mechanics, 87(Part 3), p. 449–474. Walker, K. L., & Homsy, G. M. (1978). Convection in a porous cavity. Journal of Fluid Mechanics, 87(Part 3), p. 449–474.
20.
Zurück zum Zitat Van Duijn, C., Pieters, G., & Raats, P. (2004). Steady flows in unsaturated soils are stable. Transport in Porous Media, 57(2), 215–244.MathSciNetCrossRef Van Duijn, C., Pieters, G., & Raats, P. (2004). Steady flows in unsaturated soils are stable. Transport in Porous Media, 57(2), 215–244.MathSciNetCrossRef
21.
Zurück zum Zitat Meulenbroek, B., Farajzadeh, R., & Bruining, H. (2013). The effect of interface movement and viscosity variation on the stability of a diffusive interface between aqueous and gaseous CO2 . Physics of Fluids (1994-present), 25(7), 074103. Meulenbroek, B., Farajzadeh, R., & Bruining, H. (2013). The effect of interface movement and viscosity variation on the stability of a diffusive interface between aqueous and gaseous CO2 . Physics of Fluids (1994-present), 25(7), 074103.
22.
Zurück zum Zitat Myint, P. C., & Firoozabadi, A. (2013). Onset of convection with fluid compressibility and interface movement. Physics of Fluids, 25, 094105.CrossRef Myint, P. C., & Firoozabadi, A. (2013). Onset of convection with fluid compressibility and interface movement. Physics of Fluids, 25, 094105.CrossRef
23.
Zurück zum Zitat Pruess, K., Xu, T., Apps, J., & Garcia, J. (2003). Numerical modeling of aquifer disposal of CO2. Spe Journal, 8(1), 49–60.CrossRef Pruess, K., Xu, T., Apps, J., & Garcia, J. (2003). Numerical modeling of aquifer disposal of CO2. Spe Journal, 8(1), 49–60.CrossRef
24.
Zurück zum Zitat Dentz, M., & Tartakovsky, D. M. (2009). Abrupt-interface solution for carbon dioxide injection into porous media. Transport in Porous Media, 79(1), 15–27.CrossRef Dentz, M., & Tartakovsky, D. M. (2009). Abrupt-interface solution for carbon dioxide injection into porous media. Transport in Porous Media, 79(1), 15–27.CrossRef
25.
Zurück zum Zitat Moortgat, J., Firoozabadi, A., & Moravvej Farshi, M. (2009). A new approach to compositional modeling of CO2 injection in fractured media compared to experimental data. In SPE Annual Technical Conference and Exhibition. Moortgat, J., Firoozabadi, A., & Moravvej Farshi, M. (2009). A new approach to compositional modeling of CO2 injection in fractured media compared to experimental data. In SPE Annual Technical Conference and Exhibition.
26.
Zurück zum Zitat Okhotsimskii, A., & Hozawa, M. (1998). Schlieren visualization of natural convection in binary gas–liquid systems. Chemical Engineering Science, 53(14), 2547–2573.CrossRef Okhotsimskii, A., & Hozawa, M. (1998). Schlieren visualization of natural convection in binary gas–liquid systems. Chemical Engineering Science, 53(14), 2547–2573.CrossRef
27.
Zurück zum Zitat Kneafsey, T. J., & Pruess, K. (2010). Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transport in Porous Media, 82(1), 123–139.CrossRef Kneafsey, T. J., & Pruess, K. (2010). Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transport in Porous Media, 82(1), 123–139.CrossRef
28.
Zurück zum Zitat Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A., & Huppert, H. E. (2010). Convective dissolution of carbon dioxide in saline aquifers. Geophysical research letters, 37(22). Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A., & Huppert, H. E. (2010). Convective dissolution of carbon dioxide in saline aquifers. Geophysical research letters, 37(22).
29.
Zurück zum Zitat MacMinn, C. W., Neufeld, J. A., Hesse, M. A., & Huppert, H. E. (2012). Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resources Research, 48(11). MacMinn, C. W., Neufeld, J. A., Hesse, M. A., & Huppert, H. E. (2012). Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resources Research, 48(11).
30.
Zurück zum Zitat Farajzadeh, R., Barati, A., Delil, H. A., Bruining, J., & Zitha, P. L. (2007). Mass transfer of CO2 into water and surfactant solutions. Petroleum Science and Technology, 25(12), 1493–1511.CrossRef Farajzadeh, R., Barati, A., Delil, H. A., Bruining, J., & Zitha, P. L. (2007). Mass transfer of CO2 into water and surfactant solutions. Petroleum Science and Technology, 25(12), 1493–1511.CrossRef
31.
Zurück zum Zitat Farajzadeh, R., Zitha, P. L., & Bruining, J. (2009). Enhanced mass transfer of CO2 into water: experiment and modeling. Industrial and Engineering Chemistry Research, 48(13), 6423–6431.CrossRef Farajzadeh, R., Zitha, P. L., & Bruining, J. (2009). Enhanced mass transfer of CO2 into water: experiment and modeling. Industrial and Engineering Chemistry Research, 48(13), 6423–6431.CrossRef
32.
Zurück zum Zitat Moghaddam, R. N., Rostami, B., Pourafshary, P., & Fallahzadeh, Y. (2012). Quantification of density-driven natural convection for dissolution mechanism in CO2 sequestration. Transport in Porous Media, 92(2), 439–456.CrossRef Moghaddam, R. N., Rostami, B., Pourafshary, P., & Fallahzadeh, Y. (2012). Quantification of density-driven natural convection for dissolution mechanism in CO2 sequestration. Transport in Porous Media, 92(2), 439–456.CrossRef
33.
Zurück zum Zitat Moortgat, J., Firoozabadi, A., Li, Z., & Espósito, R. O. (2013). CO2 Injection in Vertical and Horizontal Cores: Measurements and Numerical Simulation. Spe Journal, 18(2), 331–344. Moortgat, J., Firoozabadi, A., Li, Z., & Espósito, R. O. (2013). CO2 Injection in Vertical and Horizontal Cores: Measurements and Numerical Simulation. Spe Journal, 18(2), 331–344.
34.
Zurück zum Zitat Benson, S. M., Hingerl, F., Li, B., Pini, R., Tchelepi, H., & Zuo, L. (2013). Investigations in Geologic Carbon Sequestration: Multiphase Flow of CO2 and Water in Reservoir Rocks. Benson, S. M., Hingerl, F., Li, B., Pini, R., Tchelepi, H., & Zuo, L. (2013). Investigations in Geologic Carbon Sequestration: Multiphase Flow of CO2 and Water in Reservoir Rocks.
35.
Zurück zum Zitat Duan, Z., & Sun, R. (2003). An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical geology, 193(3), 257–271.CrossRef Duan, Z., & Sun, R. (2003). An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical geology, 193(3), 257–271.CrossRef
36.
Zurück zum Zitat Li, X., Boek, E., Maitland, G. C., & Trusler, J. M. (2012). Interfacial Tension of (Brines + CO2):(0.864 NaCl + 0.136 KCl) at Temperatures between (298 and 448) K, Pressures between (2 and 50) MPa, and Total Molalities of (1 to 5) mol·kg–1. Journal of Chemical and Engineering Data, 57(4), 1078–1088.CrossRef Li, X., Boek, E., Maitland, G. C., & Trusler, J. M. (2012). Interfacial Tension of (Brines + CO2):(0.864 NaCl + 0.136 KCl) at Temperatures between (298 and 448) K, Pressures between (2 and 50) MPa, and Total Molalities of (1 to 5) mol·kg–1. Journal of Chemical and Engineering Data, 57(4), 1078–1088.CrossRef
37.
Zurück zum Zitat Arendt, B., Dittmar, D., & Eggers, R. (2004). Interaction of interfacial convection and mass transfer effects in the system CO2–water. International Journal of Heat and Mass Transfer, 47(17), 3649–3657.CrossRef Arendt, B., Dittmar, D., & Eggers, R. (2004). Interaction of interfacial convection and mass transfer effects in the system CO2–water. International Journal of Heat and Mass Transfer, 47(17), 3649–3657.CrossRef
38.
Zurück zum Zitat Bando, S., Takemura, F., Nishio, M., Hihara, E., & Akai, M. (2004). Viscosity of aqueous NaCl solutions with dissolved CO2 at (30 to 60) C and (10 to 20) MPa. Journal of Chemical and Engineering Data, 49(5), 1328–1332.CrossRef Bando, S., Takemura, F., Nishio, M., Hihara, E., & Akai, M. (2004). Viscosity of aqueous NaCl solutions with dissolved CO2 at (30 to 60) C and (10 to 20) MPa. Journal of Chemical and Engineering Data, 49(5), 1328–1332.CrossRef
39.
Zurück zum Zitat Sell, A., Fadaei, H., Kim, M., & Sinton, D. (2012). Measurement of CO2 diffusivity for carbon sequestration: A microfluidic approach for reservoir-specific analysis. Environmental Science and Technology, 47(1), 71–78.CrossRef Sell, A., Fadaei, H., Kim, M., & Sinton, D. (2012). Measurement of CO2 diffusivity for carbon sequestration: A microfluidic approach for reservoir-specific analysis. Environmental Science and Technology, 47(1), 71–78.CrossRef
40.
Zurück zum Zitat Hassanzadeh, H., Pooladi-Darvish, M., & Keith, D. W. (2007). Scaling behavior of convective mixing, with application to geological storage of CO2. AIChE Journal, 53(5), 1121–1131.CrossRef Hassanzadeh, H., Pooladi-Darvish, M., & Keith, D. W. (2007). Scaling behavior of convective mixing, with application to geological storage of CO2. AIChE Journal, 53(5), 1121–1131.CrossRef
41.
Zurück zum Zitat Xu, X., Chen, S., & Zhang, D. (2006). Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Advances in Water Resources, 29(3), 397–407.CrossRef Xu, X., Chen, S., & Zhang, D. (2006). Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Advances in Water Resources, 29(3), 397–407.CrossRef
42.
Zurück zum Zitat Pau, G. S., Bell, J. B., Pruess, K., Almgren, A. S., Lijewski, M. J., & Zhang, K. (2010). High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Advances in Water Resources, 33(4), 443–455.CrossRef Pau, G. S., Bell, J. B., Pruess, K., Almgren, A. S., Lijewski, M. J., & Zhang, K. (2010). High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Advances in Water Resources, 33(4), 443–455.CrossRef
43.
Zurück zum Zitat Farajzadeh, R., Meulenbroek, B., Daniel, D., Riaz, A., & Bruining, J. (2013). An empirical theory for gravitationally unstable flow in porous media. Computational Geosciences, 17(3), 515–527.MathSciNetCrossRef Farajzadeh, R., Meulenbroek, B., Daniel, D., Riaz, A., & Bruining, J. (2013). An empirical theory for gravitationally unstable flow in porous media. Computational Geosciences, 17(3), 515–527.MathSciNetCrossRef
44.
Zurück zum Zitat Backhaus, S., Turitsyn, K., & Ecke, R. (2011). Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry. Physical Review Letters, 106(10), 104501.CrossRef Backhaus, S., Turitsyn, K., & Ecke, R. (2011). Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry. Physical Review Letters, 106(10), 104501.CrossRef
45.
Zurück zum Zitat Slim, A. C., Bandi, M., Miller, J. C., & Mahadevan, L. (2013). Dissolution-driven convection in a Hele–Shaw cell. Physics of Fluids (1994-present), 25(2), 024101. Slim, A. C., Bandi, M., Miller, J. C., & Mahadevan, L. (2013). Dissolution-driven convection in a Hele–Shaw cell. Physics of Fluids (1994-present), 25(2), 024101.
46.
Zurück zum Zitat Nield, D. A., & Bejan, A. (2006). Convection in porous media2006: springer. Nield, D. A., & Bejan, A. (2006). Convection in porous media2006: springer.
47.
Zurück zum Zitat Farajzadeh, R., Meulenbroek, B., Daniel, D., Riaz, A., & Bruining, J. (2013). An empirical theory for gravitationally unstable flow in porous media. Computational Geosciences, 17(3), 515–527.MathSciNetCrossRef Farajzadeh, R., Meulenbroek, B., Daniel, D., Riaz, A., & Bruining, J. (2013). An empirical theory for gravitationally unstable flow in porous media. Computational Geosciences, 17(3), 515–527.MathSciNetCrossRef
48.
Zurück zum Zitat Hidalgo, J. J., Fe, J., Cueto-Felgueroso, L., & Juanes, R. (2012). Scaling of convective mixing in porous media. Physical Review Letters, 109(26), 264503.CrossRef Hidalgo, J. J., Fe, J., Cueto-Felgueroso, L., & Juanes, R. (2012). Scaling of convective mixing in porous media. Physical Review Letters, 109(26), 264503.CrossRef
Metadaten
Titel
Effect of Salinity and Pressure on the Rate of Mass Transfer in Aquifer Storage of Carbon Dioxide
verfasst von
Roozbeh Khosrokhavar
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-23087-0_3