Skip to main content
Top

2022 | OriginalPaper | Chapter

Direct Production of Aluminum Titanium Alloys in Aluminum Reduction Cells: A Laboratory Test

Authors : Geir Martin Haarberg, Omar Awayssa, Gudrun Saevarsdottir, Rauan Meirbekova, Wenting Xu

Published in: Light Metals 2022

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aluminum smelters produce pure aluminum in reduction cells by the Hall-Héroult process, however, aluminum is usually supplied as a variety of alloys to their customers. The alloys are produced in the casthouse, as desired alloying elements are added to the primary aluminum from the potroom before casting. In this work the concept of producing titanium master alloys directly in the aluminum reduction cells is discussed, by feeding titanium oxide to the electrolyte, along with the alumina raw material. The results in this paper are obtained by running electrolysis experiments in a laboratory cell, and the current efficiency for the alloy deposition is estimated. Similar results for aluminum–silicon and aluminum-manganese alloys are reported in a different paper.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Inagaki, I., Takichi, T., Shirai, Y., and Ariyasu, N. “Applications and Features of Titanium for the aerospace industry,” (2004) Nippon Steel & Sumitotmo Metal UDC. Inagaki, I., Takichi, T., Shirai, Y., and Ariyasu, N. “Applications and Features of Titanium for the aerospace industry,” (2004) Nippon Steel & Sumitotmo Metal UDC.
2.
go back to reference C. Elias, J. Lima, R. Valiev and M. Meyers, (2008) “Biomedical Applications of Titanium and its Alloys,” JOM, vol. 60, pp. 46–49.CrossRef C. Elias, J. Lima, R. Valiev and M. Meyers, (2008) “Biomedical Applications of Titanium and its Alloys,” JOM, vol. 60, pp. 46–49.CrossRef
3.
go back to reference Takenaka, T., Matsuo, H., and Kawakami, M. (2011) “Direct Production of Ti–Fe Alloy in Liquid by Electrowinning in Molten Slag,” ISIJ International, vol. 51, pp. 1762–1765.CrossRef Takenaka, T., Matsuo, H., and Kawakami, M. (2011) “Direct Production of Ti–Fe Alloy in Liquid by Electrowinning in Molten Slag,” ISIJ International, vol. 51, pp. 1762–1765.CrossRef
4.
go back to reference Nie, X.-M., Dong, L.-Y., Bai, C.-G., Chen, D.-F., and Qiu, G.-B. (2006)“Preparation of Ti by direct electrochemical reduction of solid TiO2 and its reaction mechanism,” Transactions of Nonferrous metals Society of China, vol. 16, pp. 723–727. Nie, X.-M., Dong, L.-Y., Bai, C.-G., Chen, D.-F., and Qiu, G.-B. (2006)“Preparation of Ti by direct electrochemical reduction of solid TiO2 and its reaction mechanism,” Transactions of Nonferrous metals Society of China, vol. 16, pp. 723–727.
5.
go back to reference Qiu, Z., Zhang, M., Yu, Y., Che, Z., Grjotheim, K., and Kvande, H. (1988) “Formation of aluminium–titanium alloys by electrolysis and by thermal reduction of titania in cryolite-aluminia melts,” Aluminium, vol. 64, no. 6, pp. 606–609. Qiu, Z., Zhang, M., Yu, Y., Che, Z., Grjotheim, K., and Kvande, H. (1988) “Formation of aluminium–titanium alloys by electrolysis and by thermal reduction of titania in cryolite-aluminia melts,” Aluminium, vol. 64, no. 6, pp. 606–609.
6.
go back to reference Devyatkin, S., Kaptay, G., Poignet, J. and Bouteillon, J. (1998) “Chemical and electrochemical behaviour of titanium oxide and complexes in cryolite–alumina melts,” High Temperature Material Processes, vol. 2, no. 4, pp. 497–506.CrossRef Devyatkin, S., Kaptay, G., Poignet, J. and Bouteillon, J. (1998) “Chemical and electrochemical behaviour of titanium oxide and complexes in cryolite–alumina melts,” High Temperature Material Processes, vol. 2, no. 4, pp. 497–506.CrossRef
7.
go back to reference Makyta, M., Danek, V., Haarberg, G.M., and Thonstad, J. (1996) “Electrodeposition of titanium diboride from fused salts”, J. Appl. Electrochem., vol. 26, pp. 319–324.CrossRef Makyta, M., Danek, V., Haarberg, G.M., and Thonstad, J. (1996) “Electrodeposition of titanium diboride from fused salts”, J. Appl. Electrochem., vol. 26, pp. 319–324.CrossRef
8.
go back to reference Easton, M. and StJohn, D. (1999) “Grain refinement of aluminum alloys (Part I ): the nucleate and solute paradigms–a review of the literature,” Metall. Mater. Trans. A, vol. 30, no. 6, pp. 1613–1623. Easton, M. and StJohn, D. (1999) “Grain refinement of aluminum alloys (Part I ): the nucleate and solute paradigms–a review of the literature,” Metall. Mater. Trans. A, vol. 30, no. 6, pp. 1613–1623.
9.
go back to reference Easton, M. and StJohn, D. (2001) “A model of grain refinement incorporation alloy composition and potency of heterogeneous nucleant particles,” J. Acta Mater., vol. 49, pp. 1867–1878.CrossRef Easton, M. and StJohn, D. (2001) “A model of grain refinement incorporation alloy composition and potency of heterogeneous nucleant particles,” J. Acta Mater., vol. 49, pp. 1867–1878.CrossRef
10.
go back to reference Liu, A., Xie, Li, K. L., Shi, Z., Hu, X., Xu, J., Gao, B., and Wang, Z. (2015) “Preparation of Al–Ti Master alloys by Aluminothermic reduction of TiO2 in cryolite melts at 960 ˚C,” in 6th International Symposium on High-Temperature Metallurgical Processing, Florida. Liu, A., Xie, Li, K. L., Shi, Z., Hu, X., Xu, J., Gao, B., and Wang, Z. (2015) “Preparation of Al–Ti Master alloys by Aluminothermic reduction of TiO2 in cryolite melts at 960 ˚C,” in 6th International Symposium on High-Temperature Metallurgical Processing, Florida.
11.
go back to reference Awayssa, O., Meirbekova, R., Saevarsdottir, G., Audunsson, G., and Haarberg, G.M. (2020) “Current Efficiency for Direct Production of an Aluminium–Titanium Alloy by Electrolysis in a Laboratory Cell,” in Light Metals 2020, pp. 445–451. Awayssa, O., Meirbekova, R., Saevarsdottir, G., Audunsson, G., and Haarberg, G.M. (2020) “Current Efficiency for Direct Production of an Aluminium–Titanium Alloy by Electrolysis in a Laboratory Cell,” in Light Metals 2020, pp. 445–451.
12.
go back to reference Zhuxian, Q. , Yaxin, Y., Mingjie, Z., Grjotheim, K., and Kvande, H. (1988) “Preparation of Al-Ti-B master alloys by thermal reduction and electrolysis of B2O3 and TiO2 in cryolite-aluminia melts,” Aluminium, vol. 64, no. 12, pp. 1254–1257. Zhuxian, Q. , Yaxin, Y., Mingjie, Z., Grjotheim, K., and Kvande, H. (1988) “Preparation of Al-Ti-B master alloys by thermal reduction and electrolysis of B2O3 and TiO2 in cryolite-aluminia melts,” Aluminium, vol. 64, no. 12, pp. 1254–1257.
13.
go back to reference Qiu, Z., Zhang, M., and Yu, Y. (1988) “Formation of aluminium-titanium alloys by electrolysis and by thermal reduction of titania in cryolite-aluminia melts,” Aluminium, vol. 64 , no. 6, pp. 606–609. Qiu, Z., Zhang, M., and Yu, Y. (1988) “Formation of aluminium-titanium alloys by electrolysis and by thermal reduction of titania in cryolite-aluminia melts,” Aluminium, vol. 64 , no. 6, pp. 606–609.
14.
go back to reference Thonstad, J., Fellner, P., Haarberg, G.M., Hives, J., Kvande, H., and Sterten, Å. (2001) Aluminium Electrolysis. Fundamentals of the Hall-Heroult Process, Aluminium-Verlag, Düsseldorf. Thonstad, J., Fellner, P., Haarberg, G.M., Hives, J., Kvande, H., and Sterten, Å. (2001) Aluminium Electrolysis. Fundamentals of the Hall-Heroult Process, Aluminium-Verlag, Düsseldorf.
15.
go back to reference Haarberg, G.M. (2017) “Electrochemical Behaviour of Dissolved Titanium Oxides during Aluminium Deposition from Molten Fluoride Electrolytes,” Materials Transactions, vol. 58, no. 3, pp. 406–409.CrossRef Haarberg, G.M. (2017) “Electrochemical Behaviour of Dissolved Titanium Oxides during Aluminium Deposition from Molten Fluoride Electrolytes,” Materials Transactions, vol. 58, no. 3, pp. 406–409.CrossRef
16.
go back to reference Yi, H.C., Petric, A., and Moore, J. (1992) “Effect of heating rate on the combustion synthesis of Ti–Al intermetallic compounds,” Journal of Materials Science, vol. 27, no. 24, p. 6797–6806.CrossRef Yi, H.C., Petric, A., and Moore, J. (1992) “Effect of heating rate on the combustion synthesis of Ti–Al intermetallic compounds,” Journal of Materials Science, vol. 27, no. 24, p. 6797–6806.CrossRef
17.
go back to reference Jentoftsen, T.E., Haarberg, G.M., Moxnes, B.P., Buen, A., and Thonstad, J. (2001) ”Mass transfer of Iron, Silicon and Titanium in Hall-Heroult Cells”, Proceedings, 11th Int. Aluminium Symposium, ed. A. Solheim and G.M. Haarberg, Trondheim-Bergen-Trondheim, Norway, p. 217. Jentoftsen, T.E., Haarberg, G.M., Moxnes, B.P., Buen, A., and Thonstad, J. (2001) ”Mass transfer of Iron, Silicon and Titanium in Hall-Heroult Cells”, Proceedings, 11th Int. Aluminium Symposium, ed. A. Solheim and G.M. Haarberg, Trondheim-Bergen-Trondheim, Norway, p. 217.
18.
go back to reference Solli, P., Eggen, T., Rolseth, S., and Skybakmoen, E. (1996) “Design and performance of a laboratory cell for determination of current efficiency in the electrowinning of aluminium,” Journal of Applied Electrochemistry, no. 10, pp. 1019–1025. Solli, P., Eggen, T., Rolseth, S., and Skybakmoen, E. (1996) “Design and performance of a laboratory cell for determination of current efficiency in the electrowinning of aluminium,” Journal of Applied Electrochemistry, no. 10, pp. 1019–1025.
Metadata
Title
Direct Production of Aluminum Titanium Alloys in Aluminum Reduction Cells: A Laboratory Test
Authors
Geir Martin Haarberg
Omar Awayssa
Gudrun Saevarsdottir
Rauan Meirbekova
Wenting Xu
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-92529-1_55

Premium Partners