Skip to main content
Top

2016 | OriginalPaper | Chapter

4. Sorption of CH4 and CO2 on Belgium Carboniferous Shale Using a Manometric Set-up

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Shale gas resources are globally abundant and the development of these resources can increase CH4 production. It is of interest to study the possibility of enhancing CH4 production by CO2 injection (Enhanced Gas Recovery—EGR). Some studies indicate that, in shale, five molecules of CO2 can be stored for every molecule of CH4 produced. The technical feasibility of Enhanced Gas Recovery (EGR) needs to be investigated in more detail. The amount of extracted natural gas from shale has increased rapidly over the past decade. A typical shale gas reservoir combines an organic-rich deposition with extremely low matrix permeability. One important parameter in assessing the technical viability of (enhanced) production of shale gas is the sorption capacity. Our focus is on the sorption of CH4 and CO2. Therefore we have chosen to use the manometric method to measure the excess sorption isotherms of CO2 at 318 K and of CH4 at 308, 318 and 336 K and at pressures up to 105 bar on Belgium dry black shale from a depth of 745 m. The shale was obtained from a former coal mine in Zolder in the Campina Basin (North Belgium), which contains Westphalian coal and coal associated sediments of Northwest European origin. We derive the equations for excess sorption in the manometric set-up. Only a few measurements have been reported in the literature for high-pressure gas sorption on shales, and interest is largely focused on shales occurring outside Europe. The excess sorption isotherm shows an initial increase to a maximum value of 0.175 ± 0.004 mmol/g for CO2 and then starts to decrease until it becomes zero at 82 bar and subsequently the excess sorption becomes negative. Similar behaviour was also observed for other shales and coal reported in the literature. The experiments on CH4 show, as expected, decreasing sorption for increasing temperature. We apply an error analysis based on Monte-Carlo simulation. It shows that the error is increasing with increasing pressure, but that the manometric set-up can be used to determine the sorption capacity of CO2 and CH4 on the black shale with sufficient accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shaoul, J. R., Van Zelm, L. F., & De Pater, H. J. (2011). Damage mechanisms in unconventional gas well stimulation-A new look at an old problem. In SPE Middle East Unconventional Gas Conference and Exhibition. Society of Petroleum Engineers. Shaoul, J. R., Van Zelm, L. F., & De Pater, H. J. (2011). Damage mechanisms in unconventional gas well stimulation-A new look at an old problem. In SPE Middle East Unconventional Gas Conference and Exhibition. Society of Petroleum Engineers.
2.
go back to reference Campin, D. (2013). Environmental regulation of hydraulic fracturing in Queensland. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. Campin, D. (2013). Environmental regulation of hydraulic fracturing in Queensland. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
3.
go back to reference U.S. Energy Information Administration. (2013). Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. Washington, D.C: U.S. Department of Energy. U.S. Energy Information Administration. (2013). Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. Washington, D.C: U.S. Department of Energy.
4.
go back to reference BP Statistical Review of World Energy, w.b.c., 2012. BP Statistical Review of World Energy, w.b.c., 2012.
5.
go back to reference Speight, J. G. (2013) Shale gas production processes (pp. i–iii). Boston: Gulf Professional Publishing. Speight, J. G. (2013) Shale gas production processes (pp. i–iii). Boston: Gulf Professional Publishing.
6.
go back to reference NEB. (2009). A primer for understanding Canadian shale gas. Calgary, Alberta, Canada: National Energy Board. NEB. (2009). A primer for understanding Canadian shale gas. Calgary, Alberta, Canada: National Energy Board.
7.
go back to reference International Energy Agency. (2012). World energy outlook 2012. Paris: OECD Publishing. International Energy Agency. (2012). World energy outlook 2012. Paris: OECD Publishing.
8.
go back to reference Karcz, P.a., Janas, M., & Dyrka, I. (2013). Polish shale gas deposits in relation to selected shale gas prospective areas of Central and Eastern Europe. Karcz, P.a., Janas, M., & Dyrka, I. (2013). Polish shale gas deposits in relation to selected shale gas prospective areas of Central and Eastern Europe.
9.
go back to reference McGlade, C., Speirs, J., & Sorrell, S. (2013). Unconventional gas—A review of regional and global resource estimates. Energy, 55, 571–584.CrossRef McGlade, C., Speirs, J., & Sorrell, S. (2013). Unconventional gas—A review of regional and global resource estimates. Energy, 55, 571–584.CrossRef
10.
go back to reference Geny, F. (2010). Can unconventional gas be a game changer in European markets? Oxford Institute for Energy Studies. Natural Gas Service, 46(120), 2010. Geny, F. (2010). Can unconventional gas be a game changer in European markets? Oxford Institute for Energy Studies. Natural Gas Service, 46(120), 2010.
11.
go back to reference Sinal, M.L. & Lancaster, G. (1987). Liquid CO fracturing: Advantages and limitations. Journal of Canadian Petroleum Technology 26(05), 26−30. Sinal, M.L. & Lancaster, G. (1987). Liquid CO fracturing: Advantages and limitations. Journal of Canadian Petroleum Technology 26(05), 26−30.
12.
go back to reference Ishida, T., Aoyagi, K., Niwa, T., Chen, Y., Murata, S., Chen, Q., & Nakayama, Y. (2012) Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophysical Research Letters, 39(16), L16309. Ishida, T., Aoyagi, K., Niwa, T., Chen, Y., Murata, S., Chen, Q., & Nakayama, Y. (2012) Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophysical Research Letters, 39(16), L16309.
13.
go back to reference Beaton, A. (2010) Rock Eval, Total Organic Carbon and Adsorption Isotherms of the Duvernay and Muskwa Formations in Alberta: Shale Gas Data Release. Alberta Geological Survey. Beaton, A. (2010) Rock Eval, Total Organic Carbon and Adsorption Isotherms of the Duvernay and Muskwa Formations in Alberta: Shale Gas Data Release. Alberta Geological Survey.
14.
go back to reference Battistutta, E., Van Hemert, P., Lutynski, M., Bruining, H., & Wolf, K.-H. (2010). Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal. International Journal of Coal Geology, 84(1), 39–48.CrossRef Battistutta, E., Van Hemert, P., Lutynski, M., Bruining, H., & Wolf, K.-H. (2010). Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal. International Journal of Coal Geology, 84(1), 39–48.CrossRef
15.
go back to reference Hall, F., Chunhe, Z., Gasem, K., Jr, R., & Dan, Y. (1994). Adsorption of pure methane, nitrogen, and carbon dioxide and their binary mixtures on wet Fruitland coal. In SPE Eastern Regional Meeting. Hall, F., Chunhe, Z., Gasem, K., Jr, R., & Dan, Y. (1994). Adsorption of pure methane, nitrogen, and carbon dioxide and their binary mixtures on wet Fruitland coal. In SPE Eastern Regional Meeting.
16.
go back to reference Weniger, P., Kalkreuth, W., Busch, A., & Krooss, B. M. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology, 84(3), 190–205.CrossRef Weniger, P., Kalkreuth, W., Busch, A., & Krooss, B. M. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology, 84(3), 190–205.CrossRef
17.
go back to reference Ross, D. J., & Marc, R. (2009). Bustin, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927.CrossRef Ross, D. J., & Marc, R. (2009). Bustin, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927.CrossRef
18.
go back to reference Yuan, W., Pan, Z., Li, X., Yang, Y., Zhao, C., Connell, L. D., et al. (2014). Experimental study and modelling of methane adsorption and diffusion in shale. Fuel, 117, 509–519.CrossRef Yuan, W., Pan, Z., Li, X., Yang, Y., Zhao, C., Connell, L. D., et al. (2014). Experimental study and modelling of methane adsorption and diffusion in shale. Fuel, 117, 509–519.CrossRef
19.
go back to reference Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S., & Krooss, B. M. (2012). High-Pressure Methane Sorption Isotherms of Black Shales from The Netherlands. Energy & Fuels, 26(8), 4995–5004.CrossRef Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S., & Krooss, B. M. (2012). High-Pressure Methane Sorption Isotherms of Black Shales from The Netherlands. Energy & Fuels, 26(8), 4995–5004.CrossRef
20.
go back to reference Gasparik, M., Ghanizadeh, A., Gensterblum, Y., & Krooss, B. M. (2013). “Multi-temperature” method for high-pressure sorption measurements on moist shales. Review of Scientific Instruments, 84(8), 085116.CrossRef Gasparik, M., Ghanizadeh, A., Gensterblum, Y., & Krooss, B. M. (2013). “Multi-temperature” method for high-pressure sorption measurements on moist shales. Review of Scientific Instruments, 84(8), 085116.CrossRef
21.
go back to reference Khosrokhavar, R., Elsinga, G., Mojaddam, A., Farajzadeh, R., & Bruining, J. (2011). Visualization of natural convection flow of super critical CO2 in water by applying Schlieren Method. In SPE EUROPEC/EAGE Annual Conference and Exhibition. Khosrokhavar, R., Elsinga, G., Mojaddam, A., Farajzadeh, R., & Bruining, J. (2011). Visualization of natural convection flow of super critical CO2 in water by applying Schlieren Method. In SPE EUROPEC/EAGE Annual Conference and Exhibition.
22.
go back to reference Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D. N., Raven, M. D., et al. (2008). Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control, 2(3), 297–308.CrossRef Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D. N., Raven, M. D., et al. (2008). Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control, 2(3), 297–308.CrossRef
23.
go back to reference Gensterblum, Y., Van Hemert, P., Billemont, P., Busch, A., Charriére, D., Li, D., et al. (2009). European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon. Carbon, 47(13), 2958–2969.CrossRef Gensterblum, Y., Van Hemert, P., Billemont, P., Busch, A., Charriére, D., Li, D., et al. (2009). European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon. Carbon, 47(13), 2958–2969.CrossRef
24.
go back to reference Kang, S. M., Fathi, E., Ambrose, R., Akkutlu, I., & Sigal, R. (2011). Carbon dioxide storage capacity of organic-rich shales. SPE Journal, 16(4), 842–855.CrossRef Kang, S. M., Fathi, E., Ambrose, R., Akkutlu, I., & Sigal, R. (2011). Carbon dioxide storage capacity of organic-rich shales. SPE Journal, 16(4), 842–855.CrossRef
25.
go back to reference Farajzadeh, R., Zitha, P. L., & Bruining, J. (2009). Enhanced mass transfer of CO2 into water: Experiment and modeling. Industrial and Engineering Chemistry Research, 48(13), 6423–6431.CrossRef Farajzadeh, R., Zitha, P. L., & Bruining, J. (2009). Enhanced mass transfer of CO2 into water: Experiment and modeling. Industrial and Engineering Chemistry Research, 48(13), 6423–6431.CrossRef
26.
go back to reference Eftekhari, A. A., Van Der Kooi, H., & Bruining, H. (2012). Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy, 45(1), 729–745. Eftekhari, A. A., Van Der Kooi, H., & Bruining, H. (2012). Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy, 45(1), 729–745.
27.
go back to reference Meulenbroek, B., Farajzadeh, R., & Bruining, H. (2013). The effect of interface movement and viscosity variation on the stability of a diffusive interface between aqueous and gaseous CO2. Physics of Fluids (1994-present), 25(7), 074103. Meulenbroek, B., Farajzadeh, R., & Bruining, H. (2013). The effect of interface movement and viscosity variation on the stability of a diffusive interface between aqueous and gaseous CO2. Physics of Fluids (1994-present), 25(7), 074103.
28.
go back to reference Nordbotten, J. M., & Celia, M.A. (2011). Geological Storage of CO 2 : Modeling Approaches for Large-Scale Simulation: Wiley. com. Nordbotten, J. M., & Celia, M.A. (2011). Geological Storage of CO 2 : Modeling Approaches for Large-Scale Simulation: Wiley. com.
29.
go back to reference Nordbotten, J. M., Celia, M. A., & Bachu, S. (2005). Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transport in Porous Media, 58(3), 339–360.CrossRef Nordbotten, J. M., Celia, M. A., & Bachu, S. (2005). Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transport in Porous Media, 58(3), 339–360.CrossRef
30.
go back to reference Ranganathan, P., Farajzadeh, R., Bruining, H., & Zitha, P. L. (2012). Numerical simulation of natural convection in heterogeneous porous media for CO2 geological storage. Transport in Porous Media, 95(1), 25–54.CrossRef Ranganathan, P., Farajzadeh, R., Bruining, H., & Zitha, P. L. (2012). Numerical simulation of natural convection in heterogeneous porous media for CO2 geological storage. Transport in Porous Media, 95(1), 25–54.CrossRef
32.
go back to reference Kumar, A., Noh, M., Pope, G., Sepehrnoori, K., Bryant, S., & Lake, L. (2004). Reservoir simulation of CO2 storage in deep saline aquifers, paper SPE-89343. In Society of Petroleum Engineers Fourteenth Symposium on Improved Oil Recovery, Tulsa, OK. Kumar, A., Noh, M., Pope, G., Sepehrnoori, K., Bryant, S., & Lake, L. (2004). Reservoir simulation of CO2 storage in deep saline aquifers, paper SPE-89343. In Society of Petroleum Engineers Fourteenth Symposium on Improved Oil Recovery, Tulsa, OK.
33.
go back to reference Orr, F. (2004). Storage of carbon dioxide in geologic formations. Journal of Petroleum Technology, 56(9), 90–97.CrossRef Orr, F. (2004). Storage of carbon dioxide in geologic formations. Journal of Petroleum Technology, 56(9), 90–97.CrossRef
34.
go back to reference Regan, M. (2007). A Review of the Potential for Carbon Dioxide (CO 2 ) Enhanced Gas Recovery in Australia. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra. CO2CRC Publication No: RPT07-0802. p. 392007. Regan, M. (2007). A Review of the Potential for Carbon Dioxide (CO 2 ) Enhanced Gas Recovery in Australia. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra. CO2CRC Publication No: RPT07-0802. p. 392007.
35.
go back to reference Tao, Z., & Clarens, A. (2013). Estimating the carbon sequestration capacity of shale formations using methane production rates. Environmental Science and Technology, 47(19), 11318–11325.CrossRef Tao, Z., & Clarens, A. (2013). Estimating the carbon sequestration capacity of shale formations using methane production rates. Environmental Science and Technology, 47(19), 11318–11325.CrossRef
36.
go back to reference Bachu, S. (2002). Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1), 87–102.CrossRef Bachu, S. (2002). Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1), 87–102.CrossRef
37.
go back to reference Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.CrossRef Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.CrossRef
38.
go back to reference Busch, A., Alles, S., Krooss, B. M., Stanjek, H., & Dewhurst, D. (2009). Effects of physical sorption and chemical reactions of CO2 in shaly caprocks. Energy Procedia, 1(1), 3229–3235.CrossRef Busch, A., Alles, S., Krooss, B. M., Stanjek, H., & Dewhurst, D. (2009). Effects of physical sorption and chemical reactions of CO2 in shaly caprocks. Energy Procedia, 1(1), 3229–3235.CrossRef
39.
go back to reference Blok, K., Williams, R., Katofsky, R., & Hendriks, C. A. (1997). Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy, 22(2), 161–168.CrossRef Blok, K., Williams, R., Katofsky, R., & Hendriks, C. A. (1997). Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy, 22(2), 161–168.CrossRef
40.
go back to reference Oldenburg, C., Pruess, K., & Benson, S. M. (2001). Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy & Fuels, 15(2), 293–298.CrossRef Oldenburg, C., Pruess, K., & Benson, S. M. (2001). Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy & Fuels, 15(2), 293–298.CrossRef
41.
go back to reference Liu, F., Ellett, K., Xiao, Y., & Rupp, J. A. (2013). Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian–Mississippian) with potential enhanced gas recovery using reservoir simulation. International Journal of Greenhouse Gas Control, 17, 111–126.CrossRef Liu, F., Ellett, K., Xiao, Y., & Rupp, J. A. (2013). Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian–Mississippian) with potential enhanced gas recovery using reservoir simulation. International Journal of Greenhouse Gas Control, 17, 111–126.CrossRef
42.
go back to reference LeVan, M., Carta, G., & Green, D. (2007). Perry’s Chemical Engineers’ Handbook, 2007, Section. LeVan, M., Carta, G., & Green, D. (2007). Perry’s Chemical Engineers’ Handbook, 2007, Section.
43.
go back to reference Iijima, M., Nagayasu, T., Kamijyo, T., & Nakatani, S. (2011). MHI’s energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review, 48(1), 26. Iijima, M., Nagayasu, T., Kamijyo, T., & Nakatani, S. (2011). MHI’s energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review, 48(1), 26.
44.
go back to reference Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Potential for enhanced gas recovery and CO2 storage in the Marcellus shale in the Eastern United States. International Journal of Coal Geology, 118, 95–104. Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Potential for enhanced gas recovery and CO2 storage in the Marcellus shale in the Eastern United States. International Journal of Coal Geology, 118, 95–104.
45.
go back to reference Van Hemert, P., Bruining, H., Rudolph, E. S. J., Wolf, K. -H. A., & Maas, J. G. (2009). Improved manometric setup for the accurate determination of supercritical carbon dioxide sorption. Review of Scientific Instruments, 80(3), 035103–035103-11. Van Hemert, P., Bruining, H., Rudolph, E. S. J., Wolf, K. -H. A., & Maas, J. G. (2009). Improved manometric setup for the accurate determination of supercritical carbon dioxide sorption. Review of Scientific Instruments, 80(3), 035103–035103-11.
46.
go back to reference McCarty, R., & Arp, V. (1990). A new wide range equation of state for helium. Advances in Cryogenic Engineering, 35, 1465–1475. McCarty, R., & Arp, V. (1990). A new wide range equation of state for helium. Advances in Cryogenic Engineering, 35, 1465–1475.
47.
go back to reference Ross, D. J., & Marc Bustin, R. (2007) Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel, 86(17), 2696–2706. Ross, D. J., & Marc Bustin, R. (2007) Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel, 86(17), 2696–2706.
48.
go back to reference Span, R., & Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25, 1509.CrossRef Span, R., & Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25, 1509.CrossRef
49.
go back to reference Wagner, W., & Span, R. (1993). Special equations of state for methane, argon, and nitrogen for the temperature range from 270 to 350 K at pressures up to 30 MPa. International Journal of Thermophysics, 14(4), 699–725.CrossRef Wagner, W., & Span, R. (1993). Special equations of state for methane, argon, and nitrogen for the temperature range from 270 to 350 K at pressures up to 30 MPa. International Journal of Thermophysics, 14(4), 699–725.CrossRef
50.
go back to reference Gensterblum, Y., Van Hemert, P., Billemont, P., Battistutta, E., Busch, A., Krooss, B., et al. (2010). European inter-laboratory comparison of high pressure CO2 sorption isotherms II: Natural coals. International Journal of Coal Geology, 84(2), 115–124.CrossRef Gensterblum, Y., Van Hemert, P., Billemont, P., Battistutta, E., Busch, A., Krooss, B., et al. (2010). European inter-laboratory comparison of high pressure CO2 sorption isotherms II: Natural coals. International Journal of Coal Geology, 84(2), 115–124.CrossRef
51.
go back to reference Goodman, A., Busch, A., Duffy, G., Fitzgerald, J., Gasem, K., Gensterblum, Y., et al. (2004). An inter-laboratory comparison of CO2 isotherms measured on Argonne premium coal samples. Energy & Fuels, 18(4), 1175–1182.CrossRef Goodman, A., Busch, A., Duffy, G., Fitzgerald, J., Gasem, K., Gensterblum, Y., et al. (2004). An inter-laboratory comparison of CO2 isotherms measured on Argonne premium coal samples. Energy & Fuels, 18(4), 1175–1182.CrossRef
52.
go back to reference Sakurovs, R., Day, S., Weir, S., & Duffy, G. (2007). Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions. Energy & Fuels, 21(2), 992–997.CrossRef Sakurovs, R., Day, S., Weir, S., & Duffy, G. (2007). Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions. Energy & Fuels, 21(2), 992–997.CrossRef
53.
go back to reference Staib, G., Sakurovs, R., & Gray, E. M. A. (2013). A pressure and concentration dependence of CO2 diffusion in two Australian bituminous coals. International Journal of Coal Geology, 116, 106–116.CrossRef Staib, G., Sakurovs, R., & Gray, E. M. A. (2013). A pressure and concentration dependence of CO2 diffusion in two Australian bituminous coals. International Journal of Coal Geology, 116, 106–116.CrossRef
54.
go back to reference Yu, H., Guo, W., Cheng, J., & Hu, Q. (2008). Impact of experimental parameters for manometric equipment on CO2 isotherms measured: Comment on “Inter-laboratory comparison II: CO2 isotherms measured on moisture-equilibrated Argonne premium coals at 55 °C and up to 15 MPa” by Goodman et al.(2007). International Journal of Coal Geology, 74(3), 250–258. Yu, H., Guo, W., Cheng, J., & Hu, Q. (2008). Impact of experimental parameters for manometric equipment on CO2 isotherms measured: Comment on “Inter-laboratory comparison II: CO2 isotherms measured on moisture-equilibrated Argonne premium coals at 55 °C and up to 15 MPa” by Goodman et al.(2007). International Journal of Coal Geology, 74(3), 250–258.
55.
go back to reference Carroll, J. J., & Mather, A. E. (1992). The system carbon dioxide-water and the Krichevsky-Kasarnovsky equation. Journal of Solution Chemistry, 21(7), 607–621.CrossRef Carroll, J. J., & Mather, A. E. (1992). The system carbon dioxide-water and the Krichevsky-Kasarnovsky equation. Journal of Solution Chemistry, 21(7), 607–621.CrossRef
56.
go back to reference Enick, R. M., & Klara, S. M. (1990). CO2 solubility in water and brine under reservoir conditions. Chemical Engineering Communications, 90(1), 23–33.CrossRef Enick, R. M., & Klara, S. M. (1990). CO2 solubility in water and brine under reservoir conditions. Chemical Engineering Communications, 90(1), 23–33.CrossRef
57.
go back to reference Parkinson, W. J., & De Nevers, N. (1969). Partial molal volume of carbon dioxide in water solutions. Industrial and Engineering Chemistry Fundamentals, 8(4), 709–713.CrossRef Parkinson, W. J., & De Nevers, N. (1969). Partial molal volume of carbon dioxide in water solutions. Industrial and Engineering Chemistry Fundamentals, 8(4), 709–713.CrossRef
58.
go back to reference Duncan, M. S., & Agee, C. B. (2011). The partial molar volume of carbon dioxide in peridotite partial melt at high pressure. Earth and Planetary Science Letters, 312(3), 429–436.CrossRef Duncan, M. S., & Agee, C. B. (2011). The partial molar volume of carbon dioxide in peridotite partial melt at high pressure. Earth and Planetary Science Letters, 312(3), 429–436.CrossRef
59.
go back to reference Huang, X., Margulis, C. J., Li, Y., & Berne, B. J. (2005). Why Is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? structure and dynamics of CO2 dissolved in [Bmim +][PF6-]. Journal of the American Chemical Society, 127(50), 17842–17851.CrossRef Huang, X., Margulis, C. J., Li, Y., & Berne, B. J. (2005). Why Is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? structure and dynamics of CO2 dissolved in [Bmim +][PF6-]. Journal of the American Chemical Society, 127(50), 17842–17851.CrossRef
60.
go back to reference Jalili, A. H., Mehdizadeh, A., Shokouhi, M., Ahmadi, A. N., Hosseini-Jenab, M., & Fateminassab, F. (2010). Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. The Journal of Chemical Thermodynamics, 42(10), 1298–1303.CrossRef Jalili, A. H., Mehdizadeh, A., Shokouhi, M., Ahmadi, A. N., Hosseini-Jenab, M., & Fateminassab, F. (2010). Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. The Journal of Chemical Thermodynamics, 42(10), 1298–1303.CrossRef
61.
go back to reference Kumełan, J., Tuma, D., & Maurer, G. (2009). Partial molar volumes of selected gases in some ionic liquids. Fluid Phase Equilibria, 275(2), 132–144.CrossRef Kumełan, J., Tuma, D., & Maurer, G. (2009). Partial molar volumes of selected gases in some ionic liquids. Fluid Phase Equilibria, 275(2), 132–144.CrossRef
62.
go back to reference Kamiya, Y., Naito, Y., & Bourbon, D. (1994). Sorption and partial molar volumes of gases in poly (ethylene-co-vinyl acetate). Journal of Polymer Science Part B: Polymer Physics, 32(2), 281–286.CrossRef Kamiya, Y., Naito, Y., & Bourbon, D. (1994). Sorption and partial molar volumes of gases in poly (ethylene-co-vinyl acetate). Journal of Polymer Science Part B: Polymer Physics, 32(2), 281–286.CrossRef
63.
go back to reference Rother, G., Krukowski, E. G., Wallacher, D., Grimm, N., Bodnar, R. J., & Cole, D. R. (2011). Pore size effects on the sorption of supercritical CO2 in mesoporous CPG-10 silica. The Journal of Physical Chemistry C, 116(1), 917–922.CrossRef Rother, G., Krukowski, E. G., Wallacher, D., Grimm, N., Bodnar, R. J., & Cole, D. R. (2011). Pore size effects on the sorption of supercritical CO2 in mesoporous CPG-10 silica. The Journal of Physical Chemistry C, 116(1), 917–922.CrossRef
64.
go back to reference Gmelin, L. (1973). Gmelin Handbuch der anorganischen Chemie, 8. Auflage. Kohlenstoff, Teil C3, Verbindungen, ISBN 3-527-81419-1. Gmelin, L. (1973). Gmelin Handbuch der anorganischen Chemie, 8. Auflage. Kohlenstoff, Teil C3, Verbindungen, ISBN 3-527-81419-1.
65.
go back to reference Chareonsuppanimit, P., Mohammad, S. A., Robinson, R. L, Jr, & Gasem, K. A. (2012). High-pressure adsorption of gases on shales: Measurements and modeling. International Journal of Coal Geology, 95, 34–46.CrossRef Chareonsuppanimit, P., Mohammad, S. A., Robinson, R. L, Jr, & Gasem, K. A. (2012). High-pressure adsorption of gases on shales: Measurements and modeling. International Journal of Coal Geology, 95, 34–46.CrossRef
66.
go back to reference Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B. M., & Littke, R. (2013). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 20–33. Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B. M., & Littke, R. (2013). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 20–33.
Metadata
Title
Sorption of CH4 and CO2 on Belgium Carboniferous Shale Using a Manometric Set-up
Author
Roozbeh Khosrokhavar
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-23087-0_4