Skip to main content
Top

2016 | OriginalPaper | Chapter

5. Shale Gas Formations and Their Potential for Carbon Storage: Opportunities and Outlook

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Shale gas resources are proving to be globally abundant and the development of these resources can support the geologic storage of CO2 (carbon dioxide) to mitigate the climate impacts of global carbon emissions from power and industrial sectors. This chapter reviews global shale gas resources and considers both the opportunities and challenges for their development. It then provides a review of the literature on opportunities to store CO2 in shale, thus possibly helping to mitigate the impact of CO2 emissions from the power and industrial sectors. The studies reviewed indicate that the opportunity for geologic storage of CO2 in shales is significant, but knowledge of the characteristics of the different types of shale gas found globally is required. The potential for CO2 sorption as part of geologic storage in depleted shale gas reservoirs must be assessed with respect to the individual geology of each formation. Likewise, the introduction of CO2 into shale for enhanced gas recovery (EGR) operations may significantly improve both reservoir performance and economics. Based on this review, we conclude that there is a very good opportunity globally regarding the future of geologic storage of CO2 in depleted shale gas formations and as part of EGR operations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference British Petroleum, BP Energy Outlook 2030, 2013. British Petroleum, BP Energy Outlook 2030, 2013.
2.
go back to reference Exxon Mobil, The Outlook for Energy: A View to 2040, 2013. Exxon Mobil, The Outlook for Energy: A View to 2040, 2013.
3.
go back to reference Shell, New Lens Scenarios: A Shift in Perspective for a World in Transition, 2013. Shell, New Lens Scenarios: A Shift in Perspective for a World in Transition, 2013.
4.
go back to reference International Energy Agency. (2013). CO 2 emissions from fuel combustion: Highlights (2013th ed.). International Energy Agency: France. International Energy Agency. (2013). CO 2 emissions from fuel combustion: Highlights (2013th ed.). International Energy Agency: France.
5.
go back to reference IPCC, IPCC, (2014). Summary for policymakers, in climate change 2014, mitigation of climate change. In O. Edenhofer, et al., (Eds.) 2014, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge. United Kingdom and New York, NY, USA. 2014. IPCC, IPCC, (2014). Summary for policymakers, in climate change 2014, mitigation of climate change. In O. Edenhofer, et al., (Eds.) 2014, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge. United Kingdom and New York, NY, USA. 2014.
6.
go back to reference International Energy Agency. (2012). World energy outlook 2012. Paris: OECD Publishing. International Energy Agency. (2012). World energy outlook 2012. Paris: OECD Publishing.
7.
go back to reference Tao, Z., & Clarens, A. (2013). Estimating the carbon sequestration capacity of shale formations using methane production rates. Environmental Science and Technology, 47(19), 11318–11325.CrossRef Tao, Z., & Clarens, A. (2013). Estimating the carbon sequestration capacity of shale formations using methane production rates. Environmental Science and Technology, 47(19), 11318–11325.CrossRef
8.
go back to reference Rodosta, T., Hull, J., & Zoback, M. (2013). Interdisciplinary investigation of CO2 sequestration in depleted shale gas formations. U.S. Department of Energy. Rodosta, T., Hull, J., & Zoback, M. (2013). Interdisciplinary investigation of CO2 sequestration in depleted shale gas formations. U.S. Department of Energy.
9.
go back to reference Nicot, J.-P., & Duncan, I. J. (2012). Common attributes of hydraulically fractured oil and gas production and CO2 geological sequestration. Greenhouse Gases: Science and Technology, 2(5), 352–368.CrossRef Nicot, J.-P., & Duncan, I. J. (2012). Common attributes of hydraulically fractured oil and gas production and CO2 geological sequestration. Greenhouse Gases: Science and Technology, 2(5), 352–368.CrossRef
10.
go back to reference McGlade, C., Speirs, J., & Sorrell, S. (2013). Unconventional gas—a review of regional and global resource estimates. Energy, 55, 571–584.CrossRef McGlade, C., Speirs, J., & Sorrell, S. (2013). Unconventional gas—a review of regional and global resource estimates. Energy, 55, 571–584.CrossRef
11.
go back to reference Kuuskraa, V., Stevens, S. H., & Moodhe, K. D. (2013). Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 Countries outside the United States 2013. Kuuskraa, V., Stevens, S. H., & Moodhe, K. D. (2013). Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 Countries outside the United States 2013.
14.
go back to reference Martin, A. N. (2012). The potential pitfalls of using north american tight and shale gas development techniques in the North African and Middle Eastern environments. SPE Economics & Management, 3(4), 147–157.CrossRef Martin, A. N. (2012). The potential pitfalls of using north american tight and shale gas development techniques in the North African and Middle Eastern environments. SPE Economics & Management, 3(4), 147–157.CrossRef
16.
go back to reference Peduzzi, P., & Harding, R. (2013). Rohr Reis, Gas fracking: Can we safely squeeze the rocks? Environmental Development, 6, 86–99.CrossRef Peduzzi, P., & Harding, R. (2013). Rohr Reis, Gas fracking: Can we safely squeeze the rocks? Environmental Development, 6, 86–99.CrossRef
17.
go back to reference Wang, Q., Chen, X., Jha, A. N., & Rogers, H. (2014). Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States. Renewable and Sustainable Energy Reviews, 30, 1–28.CrossRef Wang, Q., Chen, X., Jha, A. N., & Rogers, H. (2014). Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States. Renewable and Sustainable Energy Reviews, 30, 1–28.CrossRef
19.
go back to reference Speight, J. G. (2013). Shale gas production processes (pp. i–iii). Boston: Gulf Professional Publishing. Speight, J. G. (2013). Shale gas production processes (pp. i–iii). Boston: Gulf Professional Publishing.
21.
go back to reference NPC. (2011). Prudent development: Realizing the potential of North America’s abundant natural gas and oil resources. Washington, DC: National Petroleum Council. www.npc.org. NPC. (2011). Prudent development: Realizing the potential of North America’s abundant natural gas and oil resources. Washington, DC: National Petroleum Council. www.​npc.​org.
22.
go back to reference GAO. (2012). Information on shale resources, development, and environmental and public health risks. Report No. GAO-12-732. Report to Congressional Requesters. United States Government Accountability Office, Washington, DC. September, 2012. GAO. (2012). Information on shale resources, development, and environmental and public health risks. Report No. GAO-12-732. Report to Congressional Requesters. United States Government Accountability Office, Washington, DC. September, 2012.
24.
go back to reference Rivard, C., Lavoie, D., Lefebvre, R., Séjourné, S., Lamontagne, C., & Duchesne, M. (2013). An overview of Canadian shale gas production and environmental concerns. International Journal of Coal Geology, 126, 64–76.CrossRef Rivard, C., Lavoie, D., Lefebvre, R., Séjourné, S., Lamontagne, C., & Duchesne, M. (2013). An overview of Canadian shale gas production and environmental concerns. International Journal of Coal Geology, 126, 64–76.CrossRef
25.
go back to reference Lavoie, D., Rivard, C., Lefebvre, R., Séjourné, S., Thériault, R., Duchesne, M., et al. (2013). The Utica Shale and gas play in southern Quebec: Geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation. International Journal of Coal Geology, 126, 77–91.CrossRef Lavoie, D., Rivard, C., Lefebvre, R., Séjourné, S., Thériault, R., Duchesne, M., et al. (2013). The Utica Shale and gas play in southern Quebec: Geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation. International Journal of Coal Geology, 126, 77–91.CrossRef
26.
go back to reference Leather, D. T., Bahadori, A., Nwaoha, C., & Wood, D. A. (2013). A review of Australia’s natural gas resources and their exploitation. Journal of Natural Gas Science and Engineering, 10, 68–88.CrossRef Leather, D. T., Bahadori, A., Nwaoha, C., & Wood, D. A. (2013). A review of Australia’s natural gas resources and their exploitation. Journal of Natural Gas Science and Engineering, 10, 68–88.CrossRef
27.
go back to reference Karcz, P., Janas, M., & Dyrka, I. (2013). Polish shale gas deposits in relation to selected shale gas prospective areas of Central and Eastern Europe. Przegląd Geologiczny 61(11), (11). Karcz, P., Janas, M., & Dyrka, I. (2013). Polish shale gas deposits in relation to selected shale gas prospective areas of Central and Eastern Europe. Przegląd Geologiczny 61(11), (11).
28.
go back to reference Kiersnowski, H., & Dyrka, I. (2013). Ordovician-Silurian shale gas resources potential in Poland: evaluation of Gas Resources Assessment Reports published to date and expected improvements for 2014 forthcoming Assessment. Kiersnowski, H., & Dyrka, I. (2013). Ordovician-Silurian shale gas resources potential in Poland: evaluation of Gas Resources Assessment Reports published to date and expected improvements for 2014 forthcoming Assessment.
29.
go back to reference Geny, F. (2010). Can unconventional gas be a game changer in European markets? Oxford Institute for Energy Studies. Nat Gas Ser, 46(120), 2010. Geny, F. (2010). Can unconventional gas be a game changer in European markets? Oxford Institute for Energy Studies. Nat Gas Ser, 46(120), 2010.
30.
go back to reference Soeder, D. J., Sharma, S., Pekney, N., Hopkinson, L., Dilmore, R., Kutchko, B., et al. (2014). An approach for assessing engineering risk from shale gas wells in the United States. International Journal of Coal Geology, 126, 4–19.CrossRef Soeder, D. J., Sharma, S., Pekney, N., Hopkinson, L., Dilmore, R., Kutchko, B., et al. (2014). An approach for assessing engineering risk from shale gas wells in the United States. International Journal of Coal Geology, 126, 4–19.CrossRef
31.
go back to reference Mokhatab, S., Araujo Fresky, M., & Rafiqul Islam, M. (2006). Applications of nanotechnology in oil and gas E&P. Journal of Petroleum Technology 58(4), (4). Mokhatab, S., Araujo Fresky, M., & Rafiqul Islam, M. (2006). Applications of nanotechnology in oil and gas E&P. Journal of Petroleum Technology 58(4), (4).
32.
go back to reference Hosterman, J. W., & Whitlow, S. I. (1981). Munsell color value as related to organic carbon in Devonian shale of Appalachian basin. AAPG Bulletin, 65(2), 333–335. Hosterman, J. W., & Whitlow, S. I. (1981). Munsell color value as related to organic carbon in Devonian shale of Appalachian basin. AAPG Bulletin, 65(2), 333–335.
33.
go back to reference Blatt, H., Tracy, R. J., & Owens, B. (1996). Petrology-igneous sedimentary, and metamorphic (pp. 377–380). New York: WH Freeman &Co. Blatt, H., Tracy, R. J., & Owens, B. (1996). Petrology-igneous sedimentary, and metamorphic (pp. 377–380). New York: WH Freeman &Co.
34.
go back to reference Bustin, R., Bustin, A., Cui, A., Ross, D., & Murthy Pathi, V. (2008). Impact of shale properties on pore structure and storage characteristics. In SPE Paper 119892 Presented at the Society of Petroleum Engineers Shale Gas Production Conference in Fort Worth, Texas; November 16–18, 2008. 2008. Bustin, R., Bustin, A., Cui, A., Ross, D., & Murthy Pathi, V. (2008). Impact of shale properties on pore structure and storage characteristics. In SPE Paper 119892 Presented at the Society of Petroleum Engineers Shale Gas Production Conference in Fort Worth, Texas; November 16–18, 2008. 2008.
35.
go back to reference Chalmers, G. R., Bustin, R. M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 96(6), 1099–1119.CrossRef Chalmers, G. R., Bustin, R. M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 96(6), 1099–1119.CrossRef
36.
go back to reference Fowler, M. G., Obermajer, M., & Stasiuk, L. D. (2003). Rock-Eval/TOC data for Devonian potential source rocks, Western Canada Sedimentary Basin. 2003: Geological Survey of Canada, Open file 1579. Fowler, M. G., Obermajer, M., & Stasiuk, L. D. (2003). Rock-Eval/TOC data for Devonian potential source rocks, Western Canada Sedimentary Basin. 2003: Geological Survey of Canada, Open file 1579.
37.
go back to reference Montgomery, S. L., Jarvie, D. M., Bowker, K. A., & Pollastro, R. M. (2005). Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi–trillion cubic foot potential. AAPG bulletin, 89(2), 155–175.CrossRef Montgomery, S. L., Jarvie, D. M., Bowker, K. A., & Pollastro, R. M. (2005). Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi–trillion cubic foot potential. AAPG bulletin, 89(2), 155–175.CrossRef
38.
go back to reference Wust, R., Nassichuk, B., Brezovski, R., Hackley, P., & Willment, N. (2013). Vitrinite reflectance versus pyrolysis Tmax data: Assessing thermal maturity in shale plays with special reference to the Duvernay shale play of the Western Canadian Sedimentary Basin, Alberta, Canada. In 2013 SPE Unconventional Resources Conference & Exhibition-Asia Pacific. Wust, R., Nassichuk, B., Brezovski, R., Hackley, P., & Willment, N. (2013). Vitrinite reflectance versus pyrolysis Tmax data: Assessing thermal maturity in shale plays with special reference to the Duvernay shale play of the Western Canadian Sedimentary Basin, Alberta, Canada. In 2013 SPE Unconventional Resources Conference & Exhibition-Asia Pacific.
39.
go back to reference Brathwaite, L. D. (2009). Shale-deposited natural gas: A review of potential. California: California Energy Commission, 2009:33. Brathwaite, L. D. (2009). Shale-deposited natural gas: A review of potential. California: California Energy Commission, 2009:33.
40.
go back to reference Martini, A. M., Walter, L. M., Ku, T. C., Budai, J. M., McIntosh, J. C., & Schoell, M. (2003). Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin. AAPG bulletin, 87(8), 1355–1375.CrossRef Martini, A. M., Walter, L. M., Ku, T. C., Budai, J. M., McIntosh, J. C., & Schoell, M. (2003). Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin. AAPG bulletin, 87(8), 1355–1375.CrossRef
41.
go back to reference Bruner, K. R., & Smosna, R. (2011). A comparative study of the mississippian barnett shale, fort worth basin, and Devonian marcellus shale, appalachian basin. National Energy Technology Laboratory, 2011, DOE/NETL-2011/1478. Bruner, K. R., & Smosna, R. (2011). A comparative study of the mississippian barnett shale, fort worth basin, and Devonian marcellus shale, appalachian basin. National Energy Technology Laboratory, 2011, DOE/NETL-2011/1478.
42.
go back to reference Wang, S., Song, Z., Cao, T., & Song, X. (2013). The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Marine and Petroleum Geology, 44, 112–119.CrossRef Wang, S., Song, Z., Cao, T., & Song, X. (2013). The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Marine and Petroleum Geology, 44, 112–119.CrossRef
43.
go back to reference Soeder, D. J. (1988). Porosity and permeability of eastern Devonian gas shale. SPE Formation Evaluation. 116–124. Soeder, D. J. (1988). Porosity and permeability of eastern Devonian gas shale. SPE Formation Evaluation. 116–124.
44.
go back to reference Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. (2010). New pore-scale considerations for shale gas in place calculations. Society of Petroleum Engineers, Paper SPE, 131772, 17p. Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. (2010). New pore-scale considerations for shale gas in place calculations. Society of Petroleum Engineers, Paper SPE, 131772, 17p.
45.
go back to reference Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. (2012). Shale gas-in-place calculations part I: new pore-scale considerations. SPE Journal, 17(01), 219–229.CrossRef Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. (2012). Shale gas-in-place calculations part I: new pore-scale considerations. SPE Journal, 17(01), 219–229.CrossRef
46.
go back to reference Shabro, V., Torres-Verdin, C., & Javadpour, F. (2011). Numerical simulation of shale-gas production: From pore-scale modeling of slip-flow, Knudsen diffusion, and Langmuir desorption to reservoir modeling of compressible fluid. In SPE-144355, paper presented at the Unconventional Gas Conference, SPE, The Woodlands, TX. Shabro, V., Torres-Verdin, C., & Javadpour, F. (2011). Numerical simulation of shale-gas production: From pore-scale modeling of slip-flow, Knudsen diffusion, and Langmuir desorption to reservoir modeling of compressible fluid. In SPE-144355, paper presented at the Unconventional Gas Conference, SPE, The Woodlands, TX.
47.
go back to reference Slatt, R. M., & O’Brien, N. R. (2011). Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bulletin, 95(12), 2017–2030.CrossRef Slatt, R. M., & O’Brien, N. R. (2011). Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bulletin, 95(12), 2017–2030.CrossRef
48.
go back to reference Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071–1098.CrossRef Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071–1098.CrossRef
49.
go back to reference Chalmers, G. R., & Bustin, R. M. (2007). The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1), 223–239.CrossRef Chalmers, G. R., & Bustin, R. M. (2007). The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1), 223–239.CrossRef
50.
go back to reference Bowker, K. A. (2007). Barnett shale gas production, Fort Worth Basin: Issues and discussion. AAPG Bulletin, 91(4), 523–533.CrossRef Bowker, K. A. (2007). Barnett shale gas production, Fort Worth Basin: Issues and discussion. AAPG Bulletin, 91(4), 523–533.CrossRef
51.
go back to reference Curtis, J. B. (2002). Fractured shale-gas systems. AAPG Bulletin, 86(11), 1921–1938. Curtis, J. B. (2002). Fractured shale-gas systems. AAPG Bulletin, 86(11), 1921–1938.
52.
go back to reference Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499.CrossRef Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499.CrossRef
53.
go back to reference Harris, L. D., de Witt Jr, W., & Colton, G. (1970). What are possible stratigraphic controls for gas fields in eastern black shale? Oil & Gas Journal, 76(14), 162–165. Harris, L. D., de Witt Jr, W., & Colton, G. (1970). What are possible stratigraphic controls for gas fields in eastern black shale? Oil & Gas Journal, 76(14), 162–165.
54.
go back to reference Gasparik, M., Ghanizadeh, A., Gensterblum, Y., & Krooss, B. M. (2013). “Multi-temperature” method for high-pressure sorption measurements on moist shales. Review of Scientific Instruments, 84(8), 085116.CrossRef Gasparik, M., Ghanizadeh, A., Gensterblum, Y., & Krooss, B. M. (2013). “Multi-temperature” method for high-pressure sorption measurements on moist shales. Review of Scientific Instruments, 84(8), 085116.CrossRef
55.
go back to reference Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S., & Krooss, B. M. (2012). High-pressure Methane sorption isotherms of black shales from The Netherlands. Energy & Fuels, 26(8), 4995–5004.CrossRef Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S., & Krooss, B. M. (2012). High-pressure Methane sorption isotherms of black shales from The Netherlands. Energy & Fuels, 26(8), 4995–5004.CrossRef
56.
go back to reference Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B. M., & Littke, R. (2013). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 34–51. Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B. M., & Littke, R. (2013). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 34–51.
57.
go back to reference Hartwig, A., & Schulz, H.-M. (2010). Applying classical shale gas evaluation concepts to Germany—Part I: The basin and slope deposits of the Stassfurt Carbonate (Ca2, Zechstein, Upper Permian) in Brandenburg. Chemie der Erde-Geochemistry, 70, 77–91.CrossRef Hartwig, A., & Schulz, H.-M. (2010). Applying classical shale gas evaluation concepts to Germany—Part I: The basin and slope deposits of the Stassfurt Carbonate (Ca2, Zechstein, Upper Permian) in Brandenburg. Chemie der Erde-Geochemistry, 70, 77–91.CrossRef
58.
go back to reference Ji, L., Zhang, T., Milliken, K. L., Qu, J., & Zhang, X. (2012). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry, 27(12), 2533–2545.CrossRef Ji, L., Zhang, T., Milliken, K. L., Qu, J., & Zhang, X. (2012). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry, 27(12), 2533–2545.CrossRef
59.
go back to reference Lu, X.-C., Li, F.-C., & Watson, A. T. (1995). Adsorption measurements in Devonian shales. Fuel, 74(4), 599–603.CrossRef Lu, X.-C., Li, F.-C., & Watson, A. T. (1995). Adsorption measurements in Devonian shales. Fuel, 74(4), 599–603.CrossRef
60.
go back to reference Ross, D. J., & Marc, R. (2009). Bustin, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927.CrossRef Ross, D. J., & Marc, R. (2009). Bustin, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927.CrossRef
61.
go back to reference Zhang, T., Ellis, G. S., Ruppel, S. C., Milliken, K., & Yang, R. (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 47, 120–131.CrossRef Zhang, T., Ellis, G. S., Ruppel, S. C., Milliken, K., & Yang, R. (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 47, 120–131.CrossRef
62.
go back to reference Khosrokhavar, R., Wolf, K.-H., & Bruining, H. (2014). Sorption of CH4 and CO2 on a carboniferous shale from Belgium using a manometric setup. International Journal of Coal Geology, 128, 153–161.CrossRef Khosrokhavar, R., Wolf, K.-H., & Bruining, H. (2014). Sorption of CH4 and CO2 on a carboniferous shale from Belgium using a manometric setup. International Journal of Coal Geology, 128, 153–161.CrossRef
63.
go back to reference Rexer, T. F., Mathia, E. J., Aplin, A. C., & Thomas, K. M. (2014). High-pressure methane adsorption and characterization of pores in posidonia shales and isolated kerogens. Energy & Fuels, 28(5), 2886–2901.CrossRef Rexer, T. F., Mathia, E. J., Aplin, A. C., & Thomas, K. M. (2014). High-pressure methane adsorption and characterization of pores in posidonia shales and isolated kerogens. Energy & Fuels, 28(5), 2886–2901.CrossRef
64.
go back to reference Gensterblum, Y., Busch, A., & Krooss, B. M. (2014). Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material. Fuel, 115, 581–588.CrossRef Gensterblum, Y., Busch, A., & Krooss, B. M. (2014). Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material. Fuel, 115, 581–588.CrossRef
65.
go back to reference Amann-Hildenbrand, A., Bertier, P., Busch, A., & Krooss, B. M. (2013). Experimental investigation of the sealing capacity of generic clay-rich caprocks. International Journal of Greenhouse Gas Control, 19, 620–641.CrossRef Amann-Hildenbrand, A., Bertier, P., Busch, A., & Krooss, B. M. (2013). Experimental investigation of the sealing capacity of generic clay-rich caprocks. International Journal of Greenhouse Gas Control, 19, 620–641.CrossRef
66.
go back to reference Beaton, A. P., Pawlowicz, J. G., Anderson, S. D. A., Berhane, H., & Rokosh, C. D. (2010). Rock eval, total organic carbon and adsorption isotherms of the duvernay and muskwa formations in alberta: shale gas data release 2010: alberta geological survey, open file report 2010–05. Beaton, A. P., Pawlowicz, J. G., Anderson, S. D. A., Berhane, H., & Rokosh, C. D. (2010). Rock eval, total organic carbon and adsorption isotherms of the duvernay and muskwa formations in alberta: shale gas data release 2010: alberta geological survey, open file report 2010–05.
67.
go back to reference Weniger, P., Kalkreuth, W., Busch, A., & Krooss, B. M. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology, 84(3), 190–205.CrossRef Weniger, P., Kalkreuth, W., Busch, A., & Krooss, B. M. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology, 84(3), 190–205.CrossRef
68.
go back to reference Wilcox, J. (2012). Carbon capture. New York: Springer. Wilcox, J. (2012). Carbon capture. New York: Springer.
69.
go back to reference Khosrokhavar, R., Schoemaker, C., Battistutta, E., Wolf, K.-H. A., & Bruining, J. (2012). Sorption of CO2 in shales using the manometric set-up. In SPE Europec/EAGE Annual Conference. 2012. Society of Petroleum Engineers. Khosrokhavar, R., Schoemaker, C., Battistutta, E., Wolf, K.-H. A., & Bruining, J. (2012). Sorption of CO2 in shales using the manometric set-up. In SPE Europec/EAGE Annual Conference. 2012. Society of Petroleum Engineers.
70.
go back to reference Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations. Computational Geosciences, 13(4), 409–434.CrossRefMATH Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations. Computational Geosciences, 13(4), 409–434.CrossRefMATH
71.
go back to reference Elder, J. (1968). The unstable thermal interface. Journal of Fluid Mechanics, 32(1), 69–96.CrossRef Elder, J. (1968). The unstable thermal interface. Journal of Fluid Mechanics, 32(1), 69–96.CrossRef
72.
go back to reference Ennis-King, J., Preston, I., & Paterson, L. (2005). Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Physics of Fluids, 17(8), 084107–084107-15. Ennis-King, J., Preston, I., & Paterson, L. (2005). Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Physics of Fluids, 17(8), 084107–084107-15.
73.
go back to reference Foster, T. D. (1965). Onset of convection in a layer of fluid cooled from above. Physics of Fluids, 8, 1770.CrossRef Foster, T. D. (1965). Onset of convection in a layer of fluid cooled from above. Physics of Fluids, 8, 1770.CrossRef
75.
go back to reference Riaz, A., Hesse, M., Tchelepi, H., & Orr, F. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics, 548, 87–111.MathSciNetCrossRef Riaz, A., Hesse, M., Tchelepi, H., & Orr, F. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics, 548, 87–111.MathSciNetCrossRef
76.
go back to reference Walker, K. L., & Homsy, G. M. (1978). Convection in a porous cavity. Journal of Fluid Mechanics, 87(Part 3), 449–474. Walker, K. L., & Homsy, G. M. (1978). Convection in a porous cavity. Journal of Fluid Mechanics, 87(Part 3), 449–474.
77.
go back to reference Van Duijn, C., Pieters, G., & Raats, P. (2004). Steady flows in unsaturated soils are stable. Transport in Porous Media, 57(2), 215–244.MathSciNetCrossRef Van Duijn, C., Pieters, G., & Raats, P. (2004). Steady flows in unsaturated soils are stable. Transport in Porous Media, 57(2), 215–244.MathSciNetCrossRef
78.
go back to reference Myint, P. C., & Firoozabadi, A. (2013). Onset of convection with fluid compressibility and interface movement. Physics of Fluids, 25, 094105.CrossRef Myint, P. C., & Firoozabadi, A. (2013). Onset of convection with fluid compressibility and interface movement. Physics of Fluids, 25, 094105.CrossRef
79.
go back to reference Elenius, M. T., & Johannsen, K. (2012). On the time scales of nonlinear instability in miscible displacement porous media flow. Computational Geosciences, 16(4), 901–911.CrossRef Elenius, M. T., & Johannsen, K. (2012). On the time scales of nonlinear instability in miscible displacement porous media flow. Computational Geosciences, 16(4), 901–911.CrossRef
80.
go back to reference Pau, G. S., Bell, J. B., Pruess, K., Almgren, A. S., Lijewski, M. J., & Zhang, K. (2010). High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Advances in Water Resources, 33(4), 443–455.CrossRef Pau, G. S., Bell, J. B., Pruess, K., Almgren, A. S., Lijewski, M. J., & Zhang, K. (2010). High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Advances in Water Resources, 33(4), 443–455.CrossRef
81.
go back to reference Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A., & Huppert, H. E. (2010). Convective dissolution of carbon dioxide in saline aquifers. Geophysical Research Letters, 37 (22), 22. Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A., & Huppert, H. E. (2010). Convective dissolution of carbon dioxide in saline aquifers. Geophysical Research Letters, 37 (22), 22.
82.
go back to reference MacMinn, C. W., Neufeld, J. A., Hesse, M. A., & Huppert, H. E. (2012). Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resources Research, 48, W11516(11). MacMinn, C. W., Neufeld, J. A., Hesse, M. A., & Huppert, H. E. (2012). Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resources Research, 48, W11516(11).
83.
go back to reference Iglauer, S. (2011). Dissolution trapping of carbon dioxide in reservoir formation brine–a carbon storage mechanism. Mass Transfer (H. Nakajima (Ed.), Rijeka: InTech. Iglauer, S. (2011). Dissolution trapping of carbon dioxide in reservoir formation brine–a carbon storage mechanism. Mass Transfer (H. Nakajima (Ed.), Rijeka: InTech.
84.
go back to reference Bachu, S. (2002). Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1), 87–102.CrossRef Bachu, S. (2002). Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1), 87–102.CrossRef
85.
go back to reference Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D. N., Raven, M. D., et al. (2008). Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control, 2(3), 297–308.CrossRef Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D. N., Raven, M. D., et al. (2008). Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control, 2(3), 297–308.CrossRef
86.
go back to reference Busch, A., Alles, S., Krooss, B. M., Stanjek, H., & Dewhurst, D. (2009). Effects of physical sorption and chemical reactions of CO2 in shaly caprocks. Energy Procedia, 1(1), 3229–3235.CrossRef Busch, A., Alles, S., Krooss, B. M., Stanjek, H., & Dewhurst, D. (2009). Effects of physical sorption and chemical reactions of CO2 in shaly caprocks. Energy Procedia, 1(1), 3229–3235.CrossRef
87.
go back to reference Nuttall, B. C., Eble, C. F., Drahovzal, J. A., & Bustin, R. M. (2005). Analysis of Devonian black shales in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production. Kentucky Geological Survey Report DE-FC26-02NT41442. Nuttall, B. C., Eble, C. F., Drahovzal, J. A., & Bustin, R. M. (2005). Analysis of Devonian black shales in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production. Kentucky Geological Survey Report DE-FC26-02NT41442.
88.
go back to reference Lahann, R., Mastalerz, M., Rupp, J. A., & Drobniak, A. (2013). Influence of CO2 on New Albany Shale composition and pore structure. International Journal of Coal Geology, 108, 2–9.CrossRef Lahann, R., Mastalerz, M., Rupp, J. A., & Drobniak, A. (2013). Influence of CO2 on New Albany Shale composition and pore structure. International Journal of Coal Geology, 108, 2–9.CrossRef
89.
go back to reference Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Assessment of factors influencing CO2 storage capacity and injectivity in Eastern U.S. Gas shales. Energy Procedia, 37, 6644–6655. Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Assessment of factors influencing CO2 storage capacity and injectivity in Eastern U.S. Gas shales. Energy Procedia, 37, 6644–6655.
90.
go back to reference Khosrokhavar, R., Elsinga, G., Farajzadeh, R., & Bruining, H. (2014). Visualization and investigation of natural convection flow of CO2 in aqueous and oleic systems. Journal of Petroleum Science and Engineering, 2014(0). Khosrokhavar, R., Elsinga, G., Farajzadeh, R., & Bruining, H. (2014). Visualization and investigation of natural convection flow of CO2 in aqueous and oleic systems. Journal of Petroleum Science and Engineering, 2014(0).
91.
go back to reference Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.CrossRef Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.CrossRef
92.
go back to reference Kang, S. M., Fathi, E., Ambrose, R., Akkutlu, I., & Sigal, R. (2011). Carbon dioxide storage capacity of organic-rich shales. SPE Journal, 16(4), 842–855.CrossRef Kang, S. M., Fathi, E., Ambrose, R., Akkutlu, I., & Sigal, R. (2011). Carbon dioxide storage capacity of organic-rich shales. SPE Journal, 16(4), 842–855.CrossRef
93.
go back to reference Blok, K., Williams, R., Katofsky, R., & Hendriks, C. A. (1997). Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy, 22(2), 161–168.CrossRef Blok, K., Williams, R., Katofsky, R., & Hendriks, C. A. (1997). Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy, 22(2), 161–168.CrossRef
94.
go back to reference Oldenburg, C., Pruess, K., & Benson, S. M. (2001). Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy & Fuels, 15(2), 293–298.CrossRef Oldenburg, C., Pruess, K., & Benson, S. M. (2001). Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy & Fuels, 15(2), 293–298.CrossRef
95.
go back to reference Schepers, K. C., Nuttall, B. C., Oudinot, A. Y., & Gonzalez, R. J. (2009). Reservoir modeling and simulation of the Devonian gas shale of eastern Kentucky for enhanced gas recovery and CO2 storage. In SPE International Conference on CO 2 Capture Storage and Utilization. SPE 126620, 2009. Society of Petroleum Engineers. Schepers, K. C., Nuttall, B. C., Oudinot, A. Y., & Gonzalez, R. J. (2009). Reservoir modeling and simulation of the Devonian gas shale of eastern Kentucky for enhanced gas recovery and CO2 storage. In SPE International Conference on CO 2 Capture Storage and Utilization. SPE 126620, 2009. Society of Petroleum Engineers.
96.
go back to reference Câmara, G., Andrade, C., & Silva, A. (2013). Júnior, and P. Rocha, Storage of carbon dioxide in geological reservoirs: Is it a cleaner technology? Journal of Cleaner Production, 47, 52–60.CrossRef Câmara, G., Andrade, C., & Silva, A. (2013). Júnior, and P. Rocha, Storage of carbon dioxide in geological reservoirs: Is it a cleaner technology? Journal of Cleaner Production, 47, 52–60.CrossRef
97.
go back to reference Regan, M. (2007). A review of the potential for Carbon Dioxide (CO2) enhanced gas recovery in Australia. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra. CO2CRC Publication No: RPT07-0802. 39p. Regan, M. (2007). A review of the potential for Carbon Dioxide (CO2) enhanced gas recovery in Australia. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra. CO2CRC Publication No: RPT07-0802. 39p.
98.
go back to reference Liu, F., Ellett, K., Xiao, Y., & Rupp, J. A. (2013). Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian–Mississippian) with potential enhanced gas recovery using reservoir simulation. International Journal of Greenhouse Gas Control, 17, 111–126.CrossRef Liu, F., Ellett, K., Xiao, Y., & Rupp, J. A. (2013). Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian–Mississippian) with potential enhanced gas recovery using reservoir simulation. International Journal of Greenhouse Gas Control, 17, 111–126.CrossRef
99.
go back to reference Perry, R. H., Green, D. W., & Maloney, J. O. (1984). Perry’s chemical engineer’s handbook, in Perry’s chemical engineer’s handbook. McGraw-Hill Book. Perry, R. H., Green, D. W., & Maloney, J. O. (1984). Perry’s chemical engineer’s handbook, in Perry’s chemical engineer’s handbook. McGraw-Hill Book.
100.
go back to reference Iijima, M., Nagayasu, T., Kamijyo, T., & Nakatani, S. (2011). MHI’s energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at Coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review, 48(1), 26–32. Iijima, M., Nagayasu, T., Kamijyo, T., & Nakatani, S. (2011). MHI’s energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at Coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review, 48(1), 26–32.
101.
go back to reference Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Potential for enhanced gas recovery and CO2 storage in the marcellus shale in the Eastern United States. International Journal of Coal Geology, 118, 95–104.CrossRef Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Potential for enhanced gas recovery and CO2 storage in the marcellus shale in the Eastern United States. International Journal of Coal Geology, 118, 95–104.CrossRef
102.
go back to reference Al-Hasami, A., Ren, S., & Tohidi, B. (2005). CO2 injection for enhanced gas recovery and geo-storage: reservoir simulation and economics. In SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers Inc., Madrid, Spain. http://dx.doi.org/10.2118/94129-MS. Al-Hasami, A., Ren, S., & Tohidi, B. (2005). CO2 injection for enhanced gas recovery and geo-storage: reservoir simulation and economics. In SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers Inc., Madrid, Spain. http://​dx.​doi.​org/​10.​2118/​94129-MS.
103.
go back to reference Ishida, T., Aoyagi, K., Niwa, T., Chen, Y., Murata, S., Chen, Q., & Nakayama, Y. (2012). Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophysical Research Letters, 39 L16309(16). Ishida, T., Aoyagi, K., Niwa, T., Chen, Y., Murata, S., Chen, Q., & Nakayama, Y. (2012). Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophysical Research Letters, 39 L16309(16).
104.
go back to reference Ross, D. J., & Marc Bustin, R. (2007). Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel, 86(17), 2696–2706.CrossRef Ross, D. J., & Marc Bustin, R. (2007). Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel, 86(17), 2696–2706.CrossRef
105.
go back to reference Chareonsuppanimit, P., Mohammad, S. A., Robinson Jr, R. L., & Gasem, K. A. (2012). High-pressure adsorption of gases on shales: Measurements and modeling. International Journal of Coal Geology, 95, 34–46. Chareonsuppanimit, P., Mohammad, S. A., Robinson Jr, R. L., & Gasem, K. A. (2012). High-pressure adsorption of gases on shales: Measurements and modeling. International Journal of Coal Geology, 95, 34–46.
106.
go back to reference Rexer, T. F., Benham, M. J., Aplin, A. C., & Thomas, K. M. (2013). Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy & Fuels, 27(6), 3099–3109. Rexer, T. F., Benham, M. J., Aplin, A. C., & Thomas, K. M. (2013). Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy & Fuels, 27(6), 3099–3109.
108.
go back to reference Weijermars, R. (2014) US shale gas production outlook based on well roll-out rate scenarios. Applied Energy, 124, 283–297. Weijermars, R. (2014) US shale gas production outlook based on well roll-out rate scenarios. Applied Energy, 124, 283–297.
Metadata
Title
Shale Gas Formations and Their Potential for Carbon Storage: Opportunities and Outlook
Author
Roozbeh Khosrokhavar
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-23087-0_5