Skip to main content

2016 | OriginalPaper | Buchkapitel

5. Shale Gas Formations and Their Potential for Carbon Storage: Opportunities and Outlook

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shale gas resources are proving to be globally abundant and the development of these resources can support the geologic storage of CO2 (carbon dioxide) to mitigate the climate impacts of global carbon emissions from power and industrial sectors. This chapter reviews global shale gas resources and considers both the opportunities and challenges for their development. It then provides a review of the literature on opportunities to store CO2 in shale, thus possibly helping to mitigate the impact of CO2 emissions from the power and industrial sectors. The studies reviewed indicate that the opportunity for geologic storage of CO2 in shales is significant, but knowledge of the characteristics of the different types of shale gas found globally is required. The potential for CO2 sorption as part of geologic storage in depleted shale gas reservoirs must be assessed with respect to the individual geology of each formation. Likewise, the introduction of CO2 into shale for enhanced gas recovery (EGR) operations may significantly improve both reservoir performance and economics. Based on this review, we conclude that there is a very good opportunity globally regarding the future of geologic storage of CO2 in depleted shale gas formations and as part of EGR operations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat British Petroleum, BP Energy Outlook 2030, 2013. British Petroleum, BP Energy Outlook 2030, 2013.
2.
Zurück zum Zitat Exxon Mobil, The Outlook for Energy: A View to 2040, 2013. Exxon Mobil, The Outlook for Energy: A View to 2040, 2013.
3.
Zurück zum Zitat Shell, New Lens Scenarios: A Shift in Perspective for a World in Transition, 2013. Shell, New Lens Scenarios: A Shift in Perspective for a World in Transition, 2013.
4.
Zurück zum Zitat International Energy Agency. (2013). CO 2 emissions from fuel combustion: Highlights (2013th ed.). International Energy Agency: France. International Energy Agency. (2013). CO 2 emissions from fuel combustion: Highlights (2013th ed.). International Energy Agency: France.
5.
Zurück zum Zitat IPCC, IPCC, (2014). Summary for policymakers, in climate change 2014, mitigation of climate change. In O. Edenhofer, et al., (Eds.) 2014, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge. United Kingdom and New York, NY, USA. 2014. IPCC, IPCC, (2014). Summary for policymakers, in climate change 2014, mitigation of climate change. In O. Edenhofer, et al., (Eds.) 2014, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge. United Kingdom and New York, NY, USA. 2014.
6.
Zurück zum Zitat International Energy Agency. (2012). World energy outlook 2012. Paris: OECD Publishing. International Energy Agency. (2012). World energy outlook 2012. Paris: OECD Publishing.
7.
Zurück zum Zitat Tao, Z., & Clarens, A. (2013). Estimating the carbon sequestration capacity of shale formations using methane production rates. Environmental Science and Technology, 47(19), 11318–11325.CrossRef Tao, Z., & Clarens, A. (2013). Estimating the carbon sequestration capacity of shale formations using methane production rates. Environmental Science and Technology, 47(19), 11318–11325.CrossRef
8.
Zurück zum Zitat Rodosta, T., Hull, J., & Zoback, M. (2013). Interdisciplinary investigation of CO2 sequestration in depleted shale gas formations. U.S. Department of Energy. Rodosta, T., Hull, J., & Zoback, M. (2013). Interdisciplinary investigation of CO2 sequestration in depleted shale gas formations. U.S. Department of Energy.
9.
Zurück zum Zitat Nicot, J.-P., & Duncan, I. J. (2012). Common attributes of hydraulically fractured oil and gas production and CO2 geological sequestration. Greenhouse Gases: Science and Technology, 2(5), 352–368.CrossRef Nicot, J.-P., & Duncan, I. J. (2012). Common attributes of hydraulically fractured oil and gas production and CO2 geological sequestration. Greenhouse Gases: Science and Technology, 2(5), 352–368.CrossRef
10.
Zurück zum Zitat McGlade, C., Speirs, J., & Sorrell, S. (2013). Unconventional gas—a review of regional and global resource estimates. Energy, 55, 571–584.CrossRef McGlade, C., Speirs, J., & Sorrell, S. (2013). Unconventional gas—a review of regional and global resource estimates. Energy, 55, 571–584.CrossRef
11.
Zurück zum Zitat Kuuskraa, V., Stevens, S. H., & Moodhe, K. D. (2013). Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 Countries outside the United States 2013. Kuuskraa, V., Stevens, S. H., & Moodhe, K. D. (2013). Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 Countries outside the United States 2013.
14.
Zurück zum Zitat Martin, A. N. (2012). The potential pitfalls of using north american tight and shale gas development techniques in the North African and Middle Eastern environments. SPE Economics & Management, 3(4), 147–157.CrossRef Martin, A. N. (2012). The potential pitfalls of using north american tight and shale gas development techniques in the North African and Middle Eastern environments. SPE Economics & Management, 3(4), 147–157.CrossRef
16.
Zurück zum Zitat Peduzzi, P., & Harding, R. (2013). Rohr Reis, Gas fracking: Can we safely squeeze the rocks? Environmental Development, 6, 86–99.CrossRef Peduzzi, P., & Harding, R. (2013). Rohr Reis, Gas fracking: Can we safely squeeze the rocks? Environmental Development, 6, 86–99.CrossRef
17.
Zurück zum Zitat Wang, Q., Chen, X., Jha, A. N., & Rogers, H. (2014). Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States. Renewable and Sustainable Energy Reviews, 30, 1–28.CrossRef Wang, Q., Chen, X., Jha, A. N., & Rogers, H. (2014). Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States. Renewable and Sustainable Energy Reviews, 30, 1–28.CrossRef
19.
Zurück zum Zitat Speight, J. G. (2013). Shale gas production processes (pp. i–iii). Boston: Gulf Professional Publishing. Speight, J. G. (2013). Shale gas production processes (pp. i–iii). Boston: Gulf Professional Publishing.
21.
Zurück zum Zitat NPC. (2011). Prudent development: Realizing the potential of North America’s abundant natural gas and oil resources. Washington, DC: National Petroleum Council. www.npc.org. NPC. (2011). Prudent development: Realizing the potential of North America’s abundant natural gas and oil resources. Washington, DC: National Petroleum Council. www.​npc.​org.
22.
Zurück zum Zitat GAO. (2012). Information on shale resources, development, and environmental and public health risks. Report No. GAO-12-732. Report to Congressional Requesters. United States Government Accountability Office, Washington, DC. September, 2012. GAO. (2012). Information on shale resources, development, and environmental and public health risks. Report No. GAO-12-732. Report to Congressional Requesters. United States Government Accountability Office, Washington, DC. September, 2012.
24.
Zurück zum Zitat Rivard, C., Lavoie, D., Lefebvre, R., Séjourné, S., Lamontagne, C., & Duchesne, M. (2013). An overview of Canadian shale gas production and environmental concerns. International Journal of Coal Geology, 126, 64–76.CrossRef Rivard, C., Lavoie, D., Lefebvre, R., Séjourné, S., Lamontagne, C., & Duchesne, M. (2013). An overview of Canadian shale gas production and environmental concerns. International Journal of Coal Geology, 126, 64–76.CrossRef
25.
Zurück zum Zitat Lavoie, D., Rivard, C., Lefebvre, R., Séjourné, S., Thériault, R., Duchesne, M., et al. (2013). The Utica Shale and gas play in southern Quebec: Geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation. International Journal of Coal Geology, 126, 77–91.CrossRef Lavoie, D., Rivard, C., Lefebvre, R., Séjourné, S., Thériault, R., Duchesne, M., et al. (2013). The Utica Shale and gas play in southern Quebec: Geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation. International Journal of Coal Geology, 126, 77–91.CrossRef
26.
Zurück zum Zitat Leather, D. T., Bahadori, A., Nwaoha, C., & Wood, D. A. (2013). A review of Australia’s natural gas resources and their exploitation. Journal of Natural Gas Science and Engineering, 10, 68–88.CrossRef Leather, D. T., Bahadori, A., Nwaoha, C., & Wood, D. A. (2013). A review of Australia’s natural gas resources and their exploitation. Journal of Natural Gas Science and Engineering, 10, 68–88.CrossRef
27.
Zurück zum Zitat Karcz, P., Janas, M., & Dyrka, I. (2013). Polish shale gas deposits in relation to selected shale gas prospective areas of Central and Eastern Europe. Przegląd Geologiczny 61(11), (11). Karcz, P., Janas, M., & Dyrka, I. (2013). Polish shale gas deposits in relation to selected shale gas prospective areas of Central and Eastern Europe. Przegląd Geologiczny 61(11), (11).
28.
Zurück zum Zitat Kiersnowski, H., & Dyrka, I. (2013). Ordovician-Silurian shale gas resources potential in Poland: evaluation of Gas Resources Assessment Reports published to date and expected improvements for 2014 forthcoming Assessment. Kiersnowski, H., & Dyrka, I. (2013). Ordovician-Silurian shale gas resources potential in Poland: evaluation of Gas Resources Assessment Reports published to date and expected improvements for 2014 forthcoming Assessment.
29.
Zurück zum Zitat Geny, F. (2010). Can unconventional gas be a game changer in European markets? Oxford Institute for Energy Studies. Nat Gas Ser, 46(120), 2010. Geny, F. (2010). Can unconventional gas be a game changer in European markets? Oxford Institute for Energy Studies. Nat Gas Ser, 46(120), 2010.
30.
Zurück zum Zitat Soeder, D. J., Sharma, S., Pekney, N., Hopkinson, L., Dilmore, R., Kutchko, B., et al. (2014). An approach for assessing engineering risk from shale gas wells in the United States. International Journal of Coal Geology, 126, 4–19.CrossRef Soeder, D. J., Sharma, S., Pekney, N., Hopkinson, L., Dilmore, R., Kutchko, B., et al. (2014). An approach for assessing engineering risk from shale gas wells in the United States. International Journal of Coal Geology, 126, 4–19.CrossRef
31.
Zurück zum Zitat Mokhatab, S., Araujo Fresky, M., & Rafiqul Islam, M. (2006). Applications of nanotechnology in oil and gas E&P. Journal of Petroleum Technology 58(4), (4). Mokhatab, S., Araujo Fresky, M., & Rafiqul Islam, M. (2006). Applications of nanotechnology in oil and gas E&P. Journal of Petroleum Technology 58(4), (4).
32.
Zurück zum Zitat Hosterman, J. W., & Whitlow, S. I. (1981). Munsell color value as related to organic carbon in Devonian shale of Appalachian basin. AAPG Bulletin, 65(2), 333–335. Hosterman, J. W., & Whitlow, S. I. (1981). Munsell color value as related to organic carbon in Devonian shale of Appalachian basin. AAPG Bulletin, 65(2), 333–335.
33.
Zurück zum Zitat Blatt, H., Tracy, R. J., & Owens, B. (1996). Petrology-igneous sedimentary, and metamorphic (pp. 377–380). New York: WH Freeman &Co. Blatt, H., Tracy, R. J., & Owens, B. (1996). Petrology-igneous sedimentary, and metamorphic (pp. 377–380). New York: WH Freeman &Co.
34.
Zurück zum Zitat Bustin, R., Bustin, A., Cui, A., Ross, D., & Murthy Pathi, V. (2008). Impact of shale properties on pore structure and storage characteristics. In SPE Paper 119892 Presented at the Society of Petroleum Engineers Shale Gas Production Conference in Fort Worth, Texas; November 16–18, 2008. 2008. Bustin, R., Bustin, A., Cui, A., Ross, D., & Murthy Pathi, V. (2008). Impact of shale properties on pore structure and storage characteristics. In SPE Paper 119892 Presented at the Society of Petroleum Engineers Shale Gas Production Conference in Fort Worth, Texas; November 16–18, 2008. 2008.
35.
Zurück zum Zitat Chalmers, G. R., Bustin, R. M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 96(6), 1099–1119.CrossRef Chalmers, G. R., Bustin, R. M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 96(6), 1099–1119.CrossRef
36.
Zurück zum Zitat Fowler, M. G., Obermajer, M., & Stasiuk, L. D. (2003). Rock-Eval/TOC data for Devonian potential source rocks, Western Canada Sedimentary Basin. 2003: Geological Survey of Canada, Open file 1579. Fowler, M. G., Obermajer, M., & Stasiuk, L. D. (2003). Rock-Eval/TOC data for Devonian potential source rocks, Western Canada Sedimentary Basin. 2003: Geological Survey of Canada, Open file 1579.
37.
Zurück zum Zitat Montgomery, S. L., Jarvie, D. M., Bowker, K. A., & Pollastro, R. M. (2005). Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi–trillion cubic foot potential. AAPG bulletin, 89(2), 155–175.CrossRef Montgomery, S. L., Jarvie, D. M., Bowker, K. A., & Pollastro, R. M. (2005). Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi–trillion cubic foot potential. AAPG bulletin, 89(2), 155–175.CrossRef
38.
Zurück zum Zitat Wust, R., Nassichuk, B., Brezovski, R., Hackley, P., & Willment, N. (2013). Vitrinite reflectance versus pyrolysis Tmax data: Assessing thermal maturity in shale plays with special reference to the Duvernay shale play of the Western Canadian Sedimentary Basin, Alberta, Canada. In 2013 SPE Unconventional Resources Conference & Exhibition-Asia Pacific. Wust, R., Nassichuk, B., Brezovski, R., Hackley, P., & Willment, N. (2013). Vitrinite reflectance versus pyrolysis Tmax data: Assessing thermal maturity in shale plays with special reference to the Duvernay shale play of the Western Canadian Sedimentary Basin, Alberta, Canada. In 2013 SPE Unconventional Resources Conference & Exhibition-Asia Pacific.
39.
Zurück zum Zitat Brathwaite, L. D. (2009). Shale-deposited natural gas: A review of potential. California: California Energy Commission, 2009:33. Brathwaite, L. D. (2009). Shale-deposited natural gas: A review of potential. California: California Energy Commission, 2009:33.
40.
Zurück zum Zitat Martini, A. M., Walter, L. M., Ku, T. C., Budai, J. M., McIntosh, J. C., & Schoell, M. (2003). Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin. AAPG bulletin, 87(8), 1355–1375.CrossRef Martini, A. M., Walter, L. M., Ku, T. C., Budai, J. M., McIntosh, J. C., & Schoell, M. (2003). Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin. AAPG bulletin, 87(8), 1355–1375.CrossRef
41.
Zurück zum Zitat Bruner, K. R., & Smosna, R. (2011). A comparative study of the mississippian barnett shale, fort worth basin, and Devonian marcellus shale, appalachian basin. National Energy Technology Laboratory, 2011, DOE/NETL-2011/1478. Bruner, K. R., & Smosna, R. (2011). A comparative study of the mississippian barnett shale, fort worth basin, and Devonian marcellus shale, appalachian basin. National Energy Technology Laboratory, 2011, DOE/NETL-2011/1478.
42.
Zurück zum Zitat Wang, S., Song, Z., Cao, T., & Song, X. (2013). The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Marine and Petroleum Geology, 44, 112–119.CrossRef Wang, S., Song, Z., Cao, T., & Song, X. (2013). The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Marine and Petroleum Geology, 44, 112–119.CrossRef
43.
Zurück zum Zitat Soeder, D. J. (1988). Porosity and permeability of eastern Devonian gas shale. SPE Formation Evaluation. 116–124. Soeder, D. J. (1988). Porosity and permeability of eastern Devonian gas shale. SPE Formation Evaluation. 116–124.
44.
Zurück zum Zitat Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. (2010). New pore-scale considerations for shale gas in place calculations. Society of Petroleum Engineers, Paper SPE, 131772, 17p. Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. (2010). New pore-scale considerations for shale gas in place calculations. Society of Petroleum Engineers, Paper SPE, 131772, 17p.
45.
Zurück zum Zitat Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. (2012). Shale gas-in-place calculations part I: new pore-scale considerations. SPE Journal, 17(01), 219–229.CrossRef Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. (2012). Shale gas-in-place calculations part I: new pore-scale considerations. SPE Journal, 17(01), 219–229.CrossRef
46.
Zurück zum Zitat Shabro, V., Torres-Verdin, C., & Javadpour, F. (2011). Numerical simulation of shale-gas production: From pore-scale modeling of slip-flow, Knudsen diffusion, and Langmuir desorption to reservoir modeling of compressible fluid. In SPE-144355, paper presented at the Unconventional Gas Conference, SPE, The Woodlands, TX. Shabro, V., Torres-Verdin, C., & Javadpour, F. (2011). Numerical simulation of shale-gas production: From pore-scale modeling of slip-flow, Knudsen diffusion, and Langmuir desorption to reservoir modeling of compressible fluid. In SPE-144355, paper presented at the Unconventional Gas Conference, SPE, The Woodlands, TX.
47.
Zurück zum Zitat Slatt, R. M., & O’Brien, N. R. (2011). Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bulletin, 95(12), 2017–2030.CrossRef Slatt, R. M., & O’Brien, N. R. (2011). Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bulletin, 95(12), 2017–2030.CrossRef
48.
Zurück zum Zitat Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071–1098.CrossRef Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071–1098.CrossRef
49.
Zurück zum Zitat Chalmers, G. R., & Bustin, R. M. (2007). The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1), 223–239.CrossRef Chalmers, G. R., & Bustin, R. M. (2007). The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1), 223–239.CrossRef
50.
Zurück zum Zitat Bowker, K. A. (2007). Barnett shale gas production, Fort Worth Basin: Issues and discussion. AAPG Bulletin, 91(4), 523–533.CrossRef Bowker, K. A. (2007). Barnett shale gas production, Fort Worth Basin: Issues and discussion. AAPG Bulletin, 91(4), 523–533.CrossRef
51.
Zurück zum Zitat Curtis, J. B. (2002). Fractured shale-gas systems. AAPG Bulletin, 86(11), 1921–1938. Curtis, J. B. (2002). Fractured shale-gas systems. AAPG Bulletin, 86(11), 1921–1938.
52.
Zurück zum Zitat Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499.CrossRef Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499.CrossRef
53.
Zurück zum Zitat Harris, L. D., de Witt Jr, W., & Colton, G. (1970). What are possible stratigraphic controls for gas fields in eastern black shale? Oil & Gas Journal, 76(14), 162–165. Harris, L. D., de Witt Jr, W., & Colton, G. (1970). What are possible stratigraphic controls for gas fields in eastern black shale? Oil & Gas Journal, 76(14), 162–165.
54.
Zurück zum Zitat Gasparik, M., Ghanizadeh, A., Gensterblum, Y., & Krooss, B. M. (2013). “Multi-temperature” method for high-pressure sorption measurements on moist shales. Review of Scientific Instruments, 84(8), 085116.CrossRef Gasparik, M., Ghanizadeh, A., Gensterblum, Y., & Krooss, B. M. (2013). “Multi-temperature” method for high-pressure sorption measurements on moist shales. Review of Scientific Instruments, 84(8), 085116.CrossRef
55.
Zurück zum Zitat Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S., & Krooss, B. M. (2012). High-pressure Methane sorption isotherms of black shales from The Netherlands. Energy & Fuels, 26(8), 4995–5004.CrossRef Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S., & Krooss, B. M. (2012). High-pressure Methane sorption isotherms of black shales from The Netherlands. Energy & Fuels, 26(8), 4995–5004.CrossRef
56.
Zurück zum Zitat Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B. M., & Littke, R. (2013). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 34–51. Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B. M., & Littke, R. (2013). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 34–51.
57.
Zurück zum Zitat Hartwig, A., & Schulz, H.-M. (2010). Applying classical shale gas evaluation concepts to Germany—Part I: The basin and slope deposits of the Stassfurt Carbonate (Ca2, Zechstein, Upper Permian) in Brandenburg. Chemie der Erde-Geochemistry, 70, 77–91.CrossRef Hartwig, A., & Schulz, H.-M. (2010). Applying classical shale gas evaluation concepts to Germany—Part I: The basin and slope deposits of the Stassfurt Carbonate (Ca2, Zechstein, Upper Permian) in Brandenburg. Chemie der Erde-Geochemistry, 70, 77–91.CrossRef
58.
Zurück zum Zitat Ji, L., Zhang, T., Milliken, K. L., Qu, J., & Zhang, X. (2012). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry, 27(12), 2533–2545.CrossRef Ji, L., Zhang, T., Milliken, K. L., Qu, J., & Zhang, X. (2012). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry, 27(12), 2533–2545.CrossRef
59.
Zurück zum Zitat Lu, X.-C., Li, F.-C., & Watson, A. T. (1995). Adsorption measurements in Devonian shales. Fuel, 74(4), 599–603.CrossRef Lu, X.-C., Li, F.-C., & Watson, A. T. (1995). Adsorption measurements in Devonian shales. Fuel, 74(4), 599–603.CrossRef
60.
Zurück zum Zitat Ross, D. J., & Marc, R. (2009). Bustin, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927.CrossRef Ross, D. J., & Marc, R. (2009). Bustin, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927.CrossRef
61.
Zurück zum Zitat Zhang, T., Ellis, G. S., Ruppel, S. C., Milliken, K., & Yang, R. (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 47, 120–131.CrossRef Zhang, T., Ellis, G. S., Ruppel, S. C., Milliken, K., & Yang, R. (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 47, 120–131.CrossRef
62.
Zurück zum Zitat Khosrokhavar, R., Wolf, K.-H., & Bruining, H. (2014). Sorption of CH4 and CO2 on a carboniferous shale from Belgium using a manometric setup. International Journal of Coal Geology, 128, 153–161.CrossRef Khosrokhavar, R., Wolf, K.-H., & Bruining, H. (2014). Sorption of CH4 and CO2 on a carboniferous shale from Belgium using a manometric setup. International Journal of Coal Geology, 128, 153–161.CrossRef
63.
Zurück zum Zitat Rexer, T. F., Mathia, E. J., Aplin, A. C., & Thomas, K. M. (2014). High-pressure methane adsorption and characterization of pores in posidonia shales and isolated kerogens. Energy & Fuels, 28(5), 2886–2901.CrossRef Rexer, T. F., Mathia, E. J., Aplin, A. C., & Thomas, K. M. (2014). High-pressure methane adsorption and characterization of pores in posidonia shales and isolated kerogens. Energy & Fuels, 28(5), 2886–2901.CrossRef
64.
Zurück zum Zitat Gensterblum, Y., Busch, A., & Krooss, B. M. (2014). Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material. Fuel, 115, 581–588.CrossRef Gensterblum, Y., Busch, A., & Krooss, B. M. (2014). Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material. Fuel, 115, 581–588.CrossRef
65.
Zurück zum Zitat Amann-Hildenbrand, A., Bertier, P., Busch, A., & Krooss, B. M. (2013). Experimental investigation of the sealing capacity of generic clay-rich caprocks. International Journal of Greenhouse Gas Control, 19, 620–641.CrossRef Amann-Hildenbrand, A., Bertier, P., Busch, A., & Krooss, B. M. (2013). Experimental investigation of the sealing capacity of generic clay-rich caprocks. International Journal of Greenhouse Gas Control, 19, 620–641.CrossRef
66.
Zurück zum Zitat Beaton, A. P., Pawlowicz, J. G., Anderson, S. D. A., Berhane, H., & Rokosh, C. D. (2010). Rock eval, total organic carbon and adsorption isotherms of the duvernay and muskwa formations in alberta: shale gas data release 2010: alberta geological survey, open file report 2010–05. Beaton, A. P., Pawlowicz, J. G., Anderson, S. D. A., Berhane, H., & Rokosh, C. D. (2010). Rock eval, total organic carbon and adsorption isotherms of the duvernay and muskwa formations in alberta: shale gas data release 2010: alberta geological survey, open file report 2010–05.
67.
Zurück zum Zitat Weniger, P., Kalkreuth, W., Busch, A., & Krooss, B. M. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology, 84(3), 190–205.CrossRef Weniger, P., Kalkreuth, W., Busch, A., & Krooss, B. M. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology, 84(3), 190–205.CrossRef
68.
Zurück zum Zitat Wilcox, J. (2012). Carbon capture. New York: Springer. Wilcox, J. (2012). Carbon capture. New York: Springer.
69.
Zurück zum Zitat Khosrokhavar, R., Schoemaker, C., Battistutta, E., Wolf, K.-H. A., & Bruining, J. (2012). Sorption of CO2 in shales using the manometric set-up. In SPE Europec/EAGE Annual Conference. 2012. Society of Petroleum Engineers. Khosrokhavar, R., Schoemaker, C., Battistutta, E., Wolf, K.-H. A., & Bruining, J. (2012). Sorption of CO2 in shales using the manometric set-up. In SPE Europec/EAGE Annual Conference. 2012. Society of Petroleum Engineers.
70.
Zurück zum Zitat Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations. Computational Geosciences, 13(4), 409–434.CrossRefMATH Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations. Computational Geosciences, 13(4), 409–434.CrossRefMATH
71.
Zurück zum Zitat Elder, J. (1968). The unstable thermal interface. Journal of Fluid Mechanics, 32(1), 69–96.CrossRef Elder, J. (1968). The unstable thermal interface. Journal of Fluid Mechanics, 32(1), 69–96.CrossRef
72.
Zurück zum Zitat Ennis-King, J., Preston, I., & Paterson, L. (2005). Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Physics of Fluids, 17(8), 084107–084107-15. Ennis-King, J., Preston, I., & Paterson, L. (2005). Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Physics of Fluids, 17(8), 084107–084107-15.
73.
Zurück zum Zitat Foster, T. D. (1965). Onset of convection in a layer of fluid cooled from above. Physics of Fluids, 8, 1770.CrossRef Foster, T. D. (1965). Onset of convection in a layer of fluid cooled from above. Physics of Fluids, 8, 1770.CrossRef
75.
Zurück zum Zitat Riaz, A., Hesse, M., Tchelepi, H., & Orr, F. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics, 548, 87–111.MathSciNetCrossRef Riaz, A., Hesse, M., Tchelepi, H., & Orr, F. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics, 548, 87–111.MathSciNetCrossRef
76.
Zurück zum Zitat Walker, K. L., & Homsy, G. M. (1978). Convection in a porous cavity. Journal of Fluid Mechanics, 87(Part 3), 449–474. Walker, K. L., & Homsy, G. M. (1978). Convection in a porous cavity. Journal of Fluid Mechanics, 87(Part 3), 449–474.
77.
Zurück zum Zitat Van Duijn, C., Pieters, G., & Raats, P. (2004). Steady flows in unsaturated soils are stable. Transport in Porous Media, 57(2), 215–244.MathSciNetCrossRef Van Duijn, C., Pieters, G., & Raats, P. (2004). Steady flows in unsaturated soils are stable. Transport in Porous Media, 57(2), 215–244.MathSciNetCrossRef
78.
Zurück zum Zitat Myint, P. C., & Firoozabadi, A. (2013). Onset of convection with fluid compressibility and interface movement. Physics of Fluids, 25, 094105.CrossRef Myint, P. C., & Firoozabadi, A. (2013). Onset of convection with fluid compressibility and interface movement. Physics of Fluids, 25, 094105.CrossRef
79.
Zurück zum Zitat Elenius, M. T., & Johannsen, K. (2012). On the time scales of nonlinear instability in miscible displacement porous media flow. Computational Geosciences, 16(4), 901–911.CrossRef Elenius, M. T., & Johannsen, K. (2012). On the time scales of nonlinear instability in miscible displacement porous media flow. Computational Geosciences, 16(4), 901–911.CrossRef
80.
Zurück zum Zitat Pau, G. S., Bell, J. B., Pruess, K., Almgren, A. S., Lijewski, M. J., & Zhang, K. (2010). High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Advances in Water Resources, 33(4), 443–455.CrossRef Pau, G. S., Bell, J. B., Pruess, K., Almgren, A. S., Lijewski, M. J., & Zhang, K. (2010). High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Advances in Water Resources, 33(4), 443–455.CrossRef
81.
Zurück zum Zitat Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A., & Huppert, H. E. (2010). Convective dissolution of carbon dioxide in saline aquifers. Geophysical Research Letters, 37 (22), 22. Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A., & Huppert, H. E. (2010). Convective dissolution of carbon dioxide in saline aquifers. Geophysical Research Letters, 37 (22), 22.
82.
Zurück zum Zitat MacMinn, C. W., Neufeld, J. A., Hesse, M. A., & Huppert, H. E. (2012). Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resources Research, 48, W11516(11). MacMinn, C. W., Neufeld, J. A., Hesse, M. A., & Huppert, H. E. (2012). Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resources Research, 48, W11516(11).
83.
Zurück zum Zitat Iglauer, S. (2011). Dissolution trapping of carbon dioxide in reservoir formation brine–a carbon storage mechanism. Mass Transfer (H. Nakajima (Ed.), Rijeka: InTech. Iglauer, S. (2011). Dissolution trapping of carbon dioxide in reservoir formation brine–a carbon storage mechanism. Mass Transfer (H. Nakajima (Ed.), Rijeka: InTech.
84.
Zurück zum Zitat Bachu, S. (2002). Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1), 87–102.CrossRef Bachu, S. (2002). Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1), 87–102.CrossRef
85.
Zurück zum Zitat Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D. N., Raven, M. D., et al. (2008). Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control, 2(3), 297–308.CrossRef Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D. N., Raven, M. D., et al. (2008). Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control, 2(3), 297–308.CrossRef
86.
Zurück zum Zitat Busch, A., Alles, S., Krooss, B. M., Stanjek, H., & Dewhurst, D. (2009). Effects of physical sorption and chemical reactions of CO2 in shaly caprocks. Energy Procedia, 1(1), 3229–3235.CrossRef Busch, A., Alles, S., Krooss, B. M., Stanjek, H., & Dewhurst, D. (2009). Effects of physical sorption and chemical reactions of CO2 in shaly caprocks. Energy Procedia, 1(1), 3229–3235.CrossRef
87.
Zurück zum Zitat Nuttall, B. C., Eble, C. F., Drahovzal, J. A., & Bustin, R. M. (2005). Analysis of Devonian black shales in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production. Kentucky Geological Survey Report DE-FC26-02NT41442. Nuttall, B. C., Eble, C. F., Drahovzal, J. A., & Bustin, R. M. (2005). Analysis of Devonian black shales in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production. Kentucky Geological Survey Report DE-FC26-02NT41442.
88.
Zurück zum Zitat Lahann, R., Mastalerz, M., Rupp, J. A., & Drobniak, A. (2013). Influence of CO2 on New Albany Shale composition and pore structure. International Journal of Coal Geology, 108, 2–9.CrossRef Lahann, R., Mastalerz, M., Rupp, J. A., & Drobniak, A. (2013). Influence of CO2 on New Albany Shale composition and pore structure. International Journal of Coal Geology, 108, 2–9.CrossRef
89.
Zurück zum Zitat Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Assessment of factors influencing CO2 storage capacity and injectivity in Eastern U.S. Gas shales. Energy Procedia, 37, 6644–6655. Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Assessment of factors influencing CO2 storage capacity and injectivity in Eastern U.S. Gas shales. Energy Procedia, 37, 6644–6655.
90.
Zurück zum Zitat Khosrokhavar, R., Elsinga, G., Farajzadeh, R., & Bruining, H. (2014). Visualization and investigation of natural convection flow of CO2 in aqueous and oleic systems. Journal of Petroleum Science and Engineering, 2014(0). Khosrokhavar, R., Elsinga, G., Farajzadeh, R., & Bruining, H. (2014). Visualization and investigation of natural convection flow of CO2 in aqueous and oleic systems. Journal of Petroleum Science and Engineering, 2014(0).
91.
Zurück zum Zitat Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.CrossRef Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.CrossRef
92.
Zurück zum Zitat Kang, S. M., Fathi, E., Ambrose, R., Akkutlu, I., & Sigal, R. (2011). Carbon dioxide storage capacity of organic-rich shales. SPE Journal, 16(4), 842–855.CrossRef Kang, S. M., Fathi, E., Ambrose, R., Akkutlu, I., & Sigal, R. (2011). Carbon dioxide storage capacity of organic-rich shales. SPE Journal, 16(4), 842–855.CrossRef
93.
Zurück zum Zitat Blok, K., Williams, R., Katofsky, R., & Hendriks, C. A. (1997). Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy, 22(2), 161–168.CrossRef Blok, K., Williams, R., Katofsky, R., & Hendriks, C. A. (1997). Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy, 22(2), 161–168.CrossRef
94.
Zurück zum Zitat Oldenburg, C., Pruess, K., & Benson, S. M. (2001). Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy & Fuels, 15(2), 293–298.CrossRef Oldenburg, C., Pruess, K., & Benson, S. M. (2001). Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy & Fuels, 15(2), 293–298.CrossRef
95.
Zurück zum Zitat Schepers, K. C., Nuttall, B. C., Oudinot, A. Y., & Gonzalez, R. J. (2009). Reservoir modeling and simulation of the Devonian gas shale of eastern Kentucky for enhanced gas recovery and CO2 storage. In SPE International Conference on CO 2 Capture Storage and Utilization. SPE 126620, 2009. Society of Petroleum Engineers. Schepers, K. C., Nuttall, B. C., Oudinot, A. Y., & Gonzalez, R. J. (2009). Reservoir modeling and simulation of the Devonian gas shale of eastern Kentucky for enhanced gas recovery and CO2 storage. In SPE International Conference on CO 2 Capture Storage and Utilization. SPE 126620, 2009. Society of Petroleum Engineers.
96.
Zurück zum Zitat Câmara, G., Andrade, C., & Silva, A. (2013). Júnior, and P. Rocha, Storage of carbon dioxide in geological reservoirs: Is it a cleaner technology? Journal of Cleaner Production, 47, 52–60.CrossRef Câmara, G., Andrade, C., & Silva, A. (2013). Júnior, and P. Rocha, Storage of carbon dioxide in geological reservoirs: Is it a cleaner technology? Journal of Cleaner Production, 47, 52–60.CrossRef
97.
Zurück zum Zitat Regan, M. (2007). A review of the potential for Carbon Dioxide (CO2) enhanced gas recovery in Australia. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra. CO2CRC Publication No: RPT07-0802. 39p. Regan, M. (2007). A review of the potential for Carbon Dioxide (CO2) enhanced gas recovery in Australia. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra. CO2CRC Publication No: RPT07-0802. 39p.
98.
Zurück zum Zitat Liu, F., Ellett, K., Xiao, Y., & Rupp, J. A. (2013). Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian–Mississippian) with potential enhanced gas recovery using reservoir simulation. International Journal of Greenhouse Gas Control, 17, 111–126.CrossRef Liu, F., Ellett, K., Xiao, Y., & Rupp, J. A. (2013). Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian–Mississippian) with potential enhanced gas recovery using reservoir simulation. International Journal of Greenhouse Gas Control, 17, 111–126.CrossRef
99.
Zurück zum Zitat Perry, R. H., Green, D. W., & Maloney, J. O. (1984). Perry’s chemical engineer’s handbook, in Perry’s chemical engineer’s handbook. McGraw-Hill Book. Perry, R. H., Green, D. W., & Maloney, J. O. (1984). Perry’s chemical engineer’s handbook, in Perry’s chemical engineer’s handbook. McGraw-Hill Book.
100.
Zurück zum Zitat Iijima, M., Nagayasu, T., Kamijyo, T., & Nakatani, S. (2011). MHI’s energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at Coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review, 48(1), 26–32. Iijima, M., Nagayasu, T., Kamijyo, T., & Nakatani, S. (2011). MHI’s energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at Coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review, 48(1), 26–32.
101.
Zurück zum Zitat Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Potential for enhanced gas recovery and CO2 storage in the marcellus shale in the Eastern United States. International Journal of Coal Geology, 118, 95–104.CrossRef Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Potential for enhanced gas recovery and CO2 storage in the marcellus shale in the Eastern United States. International Journal of Coal Geology, 118, 95–104.CrossRef
102.
Zurück zum Zitat Al-Hasami, A., Ren, S., & Tohidi, B. (2005). CO2 injection for enhanced gas recovery and geo-storage: reservoir simulation and economics. In SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers Inc., Madrid, Spain. http://dx.doi.org/10.2118/94129-MS. Al-Hasami, A., Ren, S., & Tohidi, B. (2005). CO2 injection for enhanced gas recovery and geo-storage: reservoir simulation and economics. In SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers Inc., Madrid, Spain. http://​dx.​doi.​org/​10.​2118/​94129-MS.
103.
Zurück zum Zitat Ishida, T., Aoyagi, K., Niwa, T., Chen, Y., Murata, S., Chen, Q., & Nakayama, Y. (2012). Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophysical Research Letters, 39 L16309(16). Ishida, T., Aoyagi, K., Niwa, T., Chen, Y., Murata, S., Chen, Q., & Nakayama, Y. (2012). Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophysical Research Letters, 39 L16309(16).
104.
Zurück zum Zitat Ross, D. J., & Marc Bustin, R. (2007). Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel, 86(17), 2696–2706.CrossRef Ross, D. J., & Marc Bustin, R. (2007). Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel, 86(17), 2696–2706.CrossRef
105.
Zurück zum Zitat Chareonsuppanimit, P., Mohammad, S. A., Robinson Jr, R. L., & Gasem, K. A. (2012). High-pressure adsorption of gases on shales: Measurements and modeling. International Journal of Coal Geology, 95, 34–46. Chareonsuppanimit, P., Mohammad, S. A., Robinson Jr, R. L., & Gasem, K. A. (2012). High-pressure adsorption of gases on shales: Measurements and modeling. International Journal of Coal Geology, 95, 34–46.
106.
Zurück zum Zitat Rexer, T. F., Benham, M. J., Aplin, A. C., & Thomas, K. M. (2013). Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy & Fuels, 27(6), 3099–3109. Rexer, T. F., Benham, M. J., Aplin, A. C., & Thomas, K. M. (2013). Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy & Fuels, 27(6), 3099–3109.
108.
Zurück zum Zitat Weijermars, R. (2014) US shale gas production outlook based on well roll-out rate scenarios. Applied Energy, 124, 283–297. Weijermars, R. (2014) US shale gas production outlook based on well roll-out rate scenarios. Applied Energy, 124, 283–297.
Metadaten
Titel
Shale Gas Formations and Their Potential for Carbon Storage: Opportunities and Outlook
verfasst von
Roozbeh Khosrokhavar
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-23087-0_5