Skip to main content

16.09.2014 | Automobil + Motoren | Nachricht | Online-Artikel

Münchner Forscher beobachten Lithium-Plating

verfasst von: Katrin Pudenz

3:30 Min. Lesedauer

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Wissenschaftlern der Technischen Universität München (TUM) ist es gelungen, mithilfe von Neutronenstrahlen einen Blick in die Batterie zu werfen, ohne sie zu zerstören. Dabei konnten sie den Mechanismus des sogenannten Lithium-Platings aufklären.

"Ein Lithium-Ionen-Akku kann das Drei- bis Vierfache an Energie speichern im Vergleich zu einem gleich großen Nickel-Cadmium-Akku", erklärt Dr. habil. Ralph Gilles, Wissenschaftler an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der TUM. Auch Temperaturschwankungen und längere Lagerung stellen für die Lithium-Ionen-Batterien kein Problem dar. Aufgrund dieser Vorteile gelten die Akkus als Schlüsseltechnik für die Elektromobilität. In nicht allzu ferner Zukunft sollen die Elektrofahrzeuge mit Transportmitteln mit Verbrennungsmotor mithalten können. Dazu sind jedoch leistungsfähige, sichere und schnell aufladbare Akkus notwendig.

Ein bereits bekanntes, aber bisher nicht im Detail untersuchtes Phänomen steht diesem Ziel im Weg: Die Ablagerung von metallischem Lithium, das sogenannte Lithium-Plating: So kann es vorkommen, dass die Lithium-Ionen-Ionen - statt sich wie erwünscht in die Anode einzulagern - metallisches Lithium bilden, wird erläutert. Dieses Lithium lagere sich an die Anode an und stehe damit zum Teil nicht mehr für den zuvor beschriebenen Prozess zur Verfügung. Das bedeutet wie die Münchner Forscher ausführen, die Leistungsfähigkeit der Batterie ist vermindert. In extremen Fällen könne es sogar zu einem Kurzschluss kommen. Metallisches Lithium sei außerdem schnell entflammbar.

Zerstörungsfreie Untersuchung mithilfe von Neutronenstrahlen

Bisher war es nicht möglich, den Mechanismus des Lithium-Platings genau zu beobachten. Wird die Batterie geöffnet, kann immer nur eine Momentaufnahme des Zustands beobachtet werden, erklärt Gilles. Allerdings ändert sich die Menge des metallischen Lithiums laufend. Mithilfe von Neutronenstrahlen konnten die Wissenschaftler Dr. Veronika Zinth von der Forschungs-Neutronenquelle FRM II und Christian von Lüders vom Lehrstuhl für Elektrische Energiespeichertechnik die Prozesse in der Batterie live beobachten, ohne diese aufzuschneiden.

Neutronendiffraktion

"Im Vergleich zu anderen Methoden kann man mittels Neutronendiffraktion genauere Aussagen treffen, wann wie stark das Lithium-Plating auftritt", erklärt Veronika Zinth.

Am Materialforschungsdiffraktometer Stress-Spec am FRM II bestrahlten die Forscher die Batterie während des Ladens und Entladens mit Neutronenstrahlen. Der einfallende Neutronenstrahl wird an der Batterie nach dem Gesetz der Braggschen Gleichung gebeugt und schließlich in einem Detektor aufgenommen, erläutern die Wissenschaftler. Anhand dieser Signale ermitteln die Forsche indirekt, wie viel metallisches Lithium sich gebildet hat.

Schnellere Ladung bedeutet mehr metallisches Lithium

Erste Ergebnisse der Messungen werden wie folgt aufgeführt:

  • Je schneller der Ladevorgang, desto mehr metallisches Lithium wird gebildet. Bis zu 19 Prozent der normalerweise am Lade- und Entladeprozess beteiligten Lithium-Ionen liegen dabei als metallisches Lithium vor. (Die Messung wurde bei -20 °C durchgeführt.)
  • In einer Pause von 20 Stunden nach einem schnellen Ladevorgang reagiert ein Teil des metallischen Lithiums wieder mit dem Graphit, Lithium-Ionen lagern sich in die Graphit-Schicht ein. Es handelt sich sozusagen um einen nachträglichen, langsamen Ladeprozess. Allerdings ist nur ein Teil des Lithium-Platings reversibel.
  • Tiefe Temperaturen begünstigen die Bildung von metallischem Lithium.

BMBF-Projekt ExZellTUM

Die Wissenschaftler planen weitere Experimente, die den Mechanismus des Lithium-Platings noch detaillierter aufklären sollen. Diese Ergebnisse könnten dabei helfen, herauszufinden, wie das Phänomen sich so gut wie möglich vermeiden lässt. Hierzu gehört auch die Beantwortung der Frage, wie schnell geladen werden kann, bevor Lithium-Plating einsetzt.

Die Studie ist Teil des BMBF-Projektes ExZellTUM (Exellenzzentrum für Batteriezellen). Das Projekt ExZellTUM betrachtet die Entwicklung neuer Energiespeichersysteme sowie neuer Fertigungsprozesse, Formierungsstrategien und Testtechnologien für deren Produktion. An dem Projekt sind der Lehrstuhl für Elektrische Energiespeichertechnik, das Institut für Werkzeugmaschinen und Betriebswissenschaften, der Lehrstuhl für Technische Elektrochemie und die Forschungs-Neutronenquelle Heinz Maier-Leibnitz beteiligt.

Detaillierter nachgelesen werden können die Forschungsergebnisse im Fachmedium Journal of Power Sources (Publikation: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction, Veronika Zinth, Christian von Lüders, Michael Hofmann, Johannes Hattendorff, Irmgard Buchberger, Simon Erhard, Joana Rebelo-Kornmeier, Andreas Jossen, Ralph Gilles, Journal of Power Sources, Doi: 10.1016/j.jpowsour.2014.07.168 ).

Weiterführende Themen

    Premium Partner