Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

1. Watershed Sediment Dynamics and Modeling: A Watershed Modeling System for Yellow River

verfasst von : Guangqian Wang, PhD, Xudong Fu, PhD, Haiyun Shi, PhD, Tiejian Li, PhD

Erschienen in: Advances in Water Resources Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Soil erosion is the root cause of environmental and ecological degradation in the Loess Plateau of the Yellow River. Watershed sediment dynamics was fully analyzed here, and a physically based, distributed, and continuous erosion model at the watershed scale, named the Digital Yellow River Integrated Model (DYRIM), was developed. The framework, the key supporting techniques, and the formulation for natural processes were described. The physical processes of sediment yield and transport in the Loess Plateau are divided into three subprocesses, including the water yield and soil erosion on hillslopes, gravitational erosion in gullies, and hyperconcentrated flow routing in channels. For each subprocess, a physically based simulation model was developed and embedded into the whole model system. The model system was applied to simulate the sediment yield and transport in several typical years in different watersheds of the Yellow River, and the simulation results indicated that this model system is capable of simulating the physical processes of sediment yield and transport in a large-scale watershed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Glossar
Binary tree
In computer science, a binary tree is a tree data structure in which each node has at the most two children (referred to as the left child and the right child).
Channel
A passage along which the water flows.
Database
An organized collection of data.
Drainage network
A network of channels and drains constructed on marshy or excessively wet land.
Erosion
The process by which the soil and rock are removed from the Earth’s surface by exogenic processes such as wind or water flow, and then transported and deposited in other locations.
Geographic information system
A system designed to capture, store, manipulate, analyze, manage, and present all types of geographical data.
Gravitational erosion
A type of degradation resulting from the earth’s downward pull.
Gully
A long, narrow valley with steep sides.
Hillslope
The sloping side of a hill.
Hydrological station
An agency that observes and studies the hydrologic conditions of bodies of water and territories.
Hyperconcentrated flow
A two-phase flowing mixture of water and sediment in a channel, which has properties intermediate between fluvial flow and debris flow.
Leaf area index
A dimensionless quantity that characterizes plant canopies.
Meteorological station
A facility, either on land or sea, with instruments and equipment for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate.
Parallel computing
A form of computation in which many calculations are carried out simultaneously, operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently.
Potential evaporation
The amount of evaporation that would occur if a sufficient water source was available.
Precipitation
The water that falls from the clouds towards the ground, especially as rain or snow.
Remote Sensing
The acquisition of information about an object or phenomenon without making physical contact with the object and thus in contrast to in situ observation.
Sediment transport
The movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and/or the movement of the fluid in which the sediment is entrained.
Watershed
The area of land where all of the water that is under it or drains off of it goes into the same place; Land area that drains to a common waterway, such as a stream, lake, estuary, wetland, or ultimately the ocean.
Watershed decomposition
The process by which the watershed is broken down into smaller sub-watersheds.
Literatur
1.
Zurück zum Zitat Bai, R., Li, T. J., Huang, Y. F., & Wang, G. Q. (2013). A hierarchical method for managing massive data of drainage networks extracted from high resolution DEM for large scale river basins. The 35th IAHR World Congress, Chengdu, China. Bai, R., Li, T. J., Huang, Y. F., & Wang, G. Q. (2013). A hierarchical method for managing massive data of drainage networks extracted from high resolution DEM for large scale river basins. The 35th IAHR World Congress, Chengdu, China.
2.
Zurück zum Zitat Beasley, D. B., Huggins, L. F., & Monke, E. J. (1980). ANSWERS: A model for watershed planning. Transactions of the American Society of Agricultural Engineers, 23, 938–944.CrossRef Beasley, D. B., Huggins, L. F., & Monke, E. J. (1980). ANSWERS: A model for watershed planning. Transactions of the American Society of Agricultural Engineers, 23, 938–944.CrossRef
3.
Zurück zum Zitat Cai, Q. G., Luk, S. H., & Wang, G. P. (1996). Process-based soil erosion and sediment yield model in a small basin in the hilly loess region. Acta Geographica Sinica, 51(2), 108–117. Cai, Q. G., Luk, S. H., & Wang, G. P. (1996). Process-based soil erosion and sediment yield model in a small basin in the hilly loess region. Acta Geographica Sinica, 51(2), 108–117.
4.
Zurück zum Zitat Cao, Z., Pender, G., & Meng, J. (2006). Explicit formulation of the Shields diagram for incipient motion of sediment. Journal of Hydraulic Engineering, 132(10), 1097–1099.CrossRef Cao, Z., Pender, G., & Meng, J. (2006). Explicit formulation of the Shields diagram for incipient motion of sediment. Journal of Hydraulic Engineering, 132(10), 1097–1099.CrossRef
5.
Zurück zum Zitat Cappelaere, B. (1997). Accurate diffusive wave routing. Journal of Hydraulic Engineering, 123(3), 174–181.CrossRef Cappelaere, B. (1997). Accurate diffusive wave routing. Journal of Hydraulic Engineering, 123(3), 174–181.CrossRef
6.
Zurück zum Zitat Chen, Z. X., Wang, G. Q., Liu, J. H., & Wang, K. (2005). Parameter extract from the hydrological model based on the remote sensing image. Journal of Water Resources & Water Engineering, 16(4), 49–55. Chen, Z. X., Wang, G. Q., Liu, J. H., & Wang, K. (2005). Parameter extract from the hydrological model based on the remote sensing image. Journal of Water Resources & Water Engineering, 16(4), 49–55.
8.
Zurück zum Zitat Dang, J. Q., & Li, J. (1996). Effect of water content on the strength of unsaturated loess. Acta University Agricultural Boreali-Occidentalis, 24(1), 57–60. Dang, J. Q., & Li, J. (1996). Effect of water content on the strength of unsaturated loess. Acta University Agricultural Boreali-Occidentalis, 24(1), 57–60.
9.
Zurück zum Zitat Darby, S. E., & Thorne, C. R. (1996). Development and testing of riverbank-stability analysis. Journal of Hydraulic Engineering, 122(8), 443–454.CrossRef Darby, S. E., & Thorne, C. R. (1996). Development and testing of riverbank-stability analysis. Journal of Hydraulic Engineering, 122(8), 443–454.CrossRef
10.
Zurück zum Zitat Fei, X., & Shao, X. (2004). Sediment transport capacity of gullies in small watersheds. Journal of Sediment Research, 1, 1–8. Fei, X., & Shao, X. (2004). Sediment transport capacity of gullies in small watersheds. Journal of Sediment Research, 1, 1–8.
11.
Zurück zum Zitat Flanagan, D. C., & Nearing, M. A. (1995). USDA—water erosion prediction project: Hillslope profile and watershed model documentation. National Soil Erosion Research Laboratory, Report No. 10, USDA-ARS, Indiana. Flanagan, D. C., & Nearing, M. A. (1995). USDA—water erosion prediction project: Hillslope profile and watershed model documentation. National Soil Erosion Research Laboratory, Report No. 10, USDA-ARS, Indiana.
12.
Zurück zum Zitat Foster, G. R., & Meyer, L. D. (1972). Transport of particles by shallow flow. Transactions of the American Society of Agricultural Engineers, 15(1), 99–102.CrossRef Foster, G. R., & Meyer, L. D. (1972). Transport of particles by shallow flow. Transactions of the American Society of Agricultural Engineers, 15(1), 99–102.CrossRef
13.
Zurück zum Zitat Fu, B. (1981). On the calculation of evaporation from soil. Acta Meteorologica Sinica, 39(2), 226–236. Fu, B. (1981). On the calculation of evaporation from soil. Acta Meteorologica Sinica, 39(2), 226–236.
14.
Zurück zum Zitat Jetten, V. (2002). Limburg soil erosion model user manual. Utrecht centre for environment and landscape dynamics. The Netherlands: Utrecht University. Jetten, V. (2002). Limburg soil erosion model user manual. Utrecht centre for environment and landscape dynamics. The Netherlands: Utrecht University.
15.
Zurück zum Zitat Knisel, W. G. (Ed.). (1980). CREAMS: A field-scale model for chemicals, runoff and erosion from agricultural management systems. USDA Conservation Research report No. 26, USDA-ARS, Washington DC. Knisel, W. G. (Ed.). (1980). CREAMS: A field-scale model for chemicals, runoff and erosion from agricultural management systems. USDA Conservation Research report No. 26, USDA-ARS, Washington DC.
16.
Zurück zum Zitat Li, T. J., Wang, G. Q., Huang, Y. F., et al. (2009a). Modeling the process of hillslope soil erosion in the loess plateau. Journal of Environmental Informatics, 14(1), 1–10. Li, T. J., Wang, G. Q., Huang, Y. F., et al. (2009a). Modeling the process of hillslope soil erosion in the loess plateau. Journal of Environmental Informatics, 14(1), 1–10.
17.
Zurück zum Zitat Li, T. J., Wang, G. Q., Xue, H., et al. (2009b). Soil erosion and sediment transport in the gullied Loess plateau: Scale effects and their mechanisms. Science in China Series E-Technological Sciences, 52(5), 1283–1292. Li, T. J., Wang, G. Q., Xue, H., et al. (2009b). Soil erosion and sediment transport in the gullied Loess plateau: Scale effects and their mechanisms. Science in China Series E-Technological Sciences, 52(5), 1283–1292.
18.
Zurück zum Zitat Li, T. J., Wang, G. Q., & Chen, J. (2010). A modified binary tree codification of drainage networks to support complex hydrological models. Computers & Geosciences, 36, 1427–1435.CrossRef Li, T. J., Wang, G. Q., & Chen, J. (2010). A modified binary tree codification of drainage networks to support complex hydrological models. Computers & Geosciences, 36, 1427–1435.CrossRef
19.
Zurück zum Zitat Li, T. J., Wang, G. Q., Chen, J., et al. (2011). Dynamic parallelization of hydrological model simulations. Environmental Modelling & Software, 26, 1736–1746.CrossRef Li, T. J., Wang, G. Q., Chen, J., et al. (2011). Dynamic parallelization of hydrological model simulations. Environmental Modelling & Software, 26, 1736–1746.CrossRef
20.
Zurück zum Zitat Li, T. J., Li, J. Y., Shi, H. Y., et al. (2013). A smartphone-based interactive flood warning system for ungauged mountainous regions. Journal of Sichuan University (Engineering Science Edition), 45(1), 23–27. Li, T. J., Li, J. Y., Shi, H. Y., et al. (2013). A smartphone-based interactive flood warning system for ungauged mountainous regions. Journal of Sichuan University (Engineering Science Edition), 45(1), 23–27.
22.
Zurück zum Zitat Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., Styczen, M. E., & Folly, A. J. V. (1998a). The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527–544. Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., Styczen, M. E., & Folly, A. J. V. (1998a). The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527–544.
23.
Zurück zum Zitat Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., Styczen, M. E., & Folly, A. J. V. (1998b). The European Soil Erosion Model (EUROSEM): Documentation and user guide. Silsoe: Cranfield University. Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., Styczen, M. E., & Folly, A. J. V. (1998b). The European Soil Erosion Model (EUROSEM): Documentation and user guide. Silsoe: Cranfield University.
24.
Zurück zum Zitat Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models, 1—A discussion of principles. Journal of Hydrology, 10, 282–290.CrossRef Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models, 1—A discussion of principles. Journal of Hydrology, 10, 282–290.CrossRef
25.
Zurück zum Zitat O’Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28, 323–344.CrossRef O’Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28, 323–344.CrossRef
26.
Zurück zum Zitat Osman, A. M., & Thorne, C. R. (1988). Riverbank stability analysis I: Theory. Journal of Hydraulic Engineering, 114(2), 134–150.CrossRef Osman, A. M., & Thorne, C. R. (1988). Riverbank stability analysis I: Theory. Journal of Hydraulic Engineering, 114(2), 134–150.CrossRef
27.
Zurück zum Zitat Shi, H. Y. (2013). Computation of spatially distributed rainfall by merging raingauge measurements, satellite observations and topographic information: A case study of the 21 July 2012 rainstorm in Beijing, China. The 35th IAHR World Congress, Chengdu, China. Shi, H. Y. (2013). Computation of spatially distributed rainfall by merging raingauge measurements, satellite observations and topographic information: A case study of the 21 July 2012 rainstorm in Beijing, China. The 35th IAHR World Congress, Chengdu, China.
28.
Zurück zum Zitat Shi, H. Y., Fu, X. D., Wang, H., et al. (2011). Modeling and prediction of water loss and soil erosion for high-relief mountainous region: Case study of Qamdo Region. Journal of Basic Science and Engineering, 19(S1), 17–27. Shi, H. Y., Fu, X. D., Wang, H., et al. (2011). Modeling and prediction of water loss and soil erosion for high-relief mountainous region: Case study of Qamdo Region. Journal of Basic Science and Engineering, 19(S1), 17–27.
29.
Zurück zum Zitat Shi, H. Y., Li, T. J., Zhu, J. F., et al. (2012). Impact of check dams on the sharp decrease of runoff in the middle Yellow River: Case study in the Huangfuchuan River basin. The 5th International Yellow River Forum, Zhengzhou, China. Shi, H. Y., Li, T. J., Zhu, J. F., et al. (2012). Impact of check dams on the sharp decrease of runoff in the middle Yellow River: Case study in the Huangfuchuan River basin. The 5th International Yellow River Forum, Zhengzhou, China.
30.
Zurück zum Zitat Shi, H. Y., Fu, X. D., Chen, J., Wang, G. Q., & Li, T. J. (2014). Spatial distribution of monthly potential evaporation over mountainous regions: A case of the Lhasa River basin in China. Hydrological Sciences Journal. doi:10.1080/02626667.2014.881486. Shi, H. Y., Fu, X. D., Chen, J., Wang, G. Q., & Li, T. J. (2014). Spatial distribution of monthly potential evaporation over mountainous regions: A case of the Lhasa River basin in China. Hydrological Sciences Journal. doi:10.1080/02626667.2014.881486.
31.
Zurück zum Zitat Tang, L. Q., Chen, G. X., & Cai, M. Y. (1990). A mathematical model of sediment yield on small watershed in the gullied-hilly Loess Plateau. Journal of Hohai University, 18(6), 10–16. Tang, L. Q., Chen, G. X., & Cai, M. Y. (1990). A mathematical model of sediment yield on small watershed in the gullied-hilly Loess Plateau. Journal of Hohai University, 18(6), 10–16.
32.
Zurück zum Zitat Tang, L. Q., & Chen, G. X. (1994). Soil erosion formula and its application in sediment yield calculation. Advances in Water Science, 5(2), 104–110. Tang, L. Q., & Chen, G. X. (1994). Soil erosion formula and its application in sediment yield calculation. Advances in Water Science, 5(2), 104–110.
33.
Zurück zum Zitat Wang, X. K., Ning, Q., & Hu, W. D. (1982). The formation and process of confluence of the flow with hyperconcentration in the gullied-hilly loess area of the Yellow River basin. Journal of Hydraulic Engineering, 7, 26–35. Wang, X. K., Ning, Q., & Hu, W. D. (1982). The formation and process of confluence of the flow with hyperconcentration in the gullied-hilly loess area of the Yellow River basin. Journal of Hydraulic Engineering, 7, 26–35.
34.
Zurück zum Zitat Wang, G. Q., Wu, B. S., & Li, T. J. (2007). Digital Yellow River model. Journal of Hydro-Environment Research, 1(1), 1–11.CrossRef Wang, G. Q., Wu, B. S., & Li, T. J. (2007). Digital Yellow River model. Journal of Hydro-Environment Research, 1(1), 1–11.CrossRef
35.
Zurück zum Zitat Wang, H., Fu, X. D., & Wang, G. Q., et al. (2011). A common parallel computing framework for modeling hydrological processes of river basins. Parallel Computing, 37, 302–315.CrossRef Wang, H., Fu, X. D., & Wang, G. Q., et al. (2011). A common parallel computing framework for modeling hydrological processes of river basins. Parallel Computing, 37, 302–315.CrossRef
36.
Zurück zum Zitat Wang, H., Zhou, Y., Fu, X. D., et al. (2012). Maximum speedup ratio curve (MSC) in parallel computing of the binary-tree-based drainage network. Computers & Geosciences, 38, 127–135.CrossRef Wang, H., Zhou, Y., Fu, X. D., et al. (2012). Maximum speedup ratio curve (MSC) in parallel computing of the binary-tree-based drainage network. Computers & Geosciences, 38, 127–135.CrossRef
37.
Zurück zum Zitat Yin, X. L. (2009). Study on scheduling of main reservoir on Pearl River for estuarine fresh water providing based on digital basin model. China: Tsinghua University. Yin, X. L. (2009). Study on scheduling of main reservoir on Pearl River for estuarine fresh water providing based on digital basin model. China: Tsinghua University.
38.
Zurück zum Zitat Zhang, T. Z. (1993). Outline of the Loess Plateau. Beijing: China Environmental Science Press. Zhang, T. Z. (1993). Outline of the Loess Plateau. Beijing: China Environmental Science Press.
39.
Zurück zum Zitat Zhang, A., Li, T. J., Li, X., et al. (2013). A general framework for model parameter calibration using job scheduling of an HPC system. The 35th IAHR World Congress, Chengdu, China. Zhang, A., Li, T. J., Li, X., et al. (2013). A general framework for model parameter calibration using job scheduling of an HPC system. The 35th IAHR World Congress, Chengdu, China.
Metadaten
Titel
Watershed Sediment Dynamics and Modeling: A Watershed Modeling System for Yellow River
verfasst von
Guangqian Wang, PhD
Xudong Fu, PhD
Haiyun Shi, PhD
Tiejian Li, PhD
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-11023-3_1