Skip to main content
Contributions

Is it Merely a Question of “What” to Prompt or Also “When” to Prompt?

The Role of Point of Presentation Time of Prompts in Self-Regulated Learning

Published Online:https://doi.org/10.1024/1010-0652.23.2.105

The purpose of this study was to investigate whether the effectiveness of prompts depends on their point of presentation time in self-regulated learning. First, based on the cognitive load theory, we investigated whether presenting prompts during the learning process instead of before has a positive effect on the process and outcome of self-regulated learning. Second, based on an integration of the cognitive load theory and a model of learning regulation goals, we investigated whether presenting prompts during learning and according to a theoretically optimal course of learning regulation has a positive effect on the process and outcome of self-regulated learning. In an experimental study with a one-factorial between-subjects design, with “point of presentation time of prompts” as independent variable and strategy use as well as learning outcome as dependent variables, 95 students were randomly assigned to one of three conditions. During self-regulated learning in a computer-based learning environment on a physics domain, all conditions got the same prompts, whereas their point of presentation time differed (according to optimal regulation course/contrary to optimal regulation course/before learning). Results revealed that presenting prompts during learning instead of before had a positive effect on learning outcome. Results further revealed that adapting the presentation of prompts according to an optimal course of learning regulation did not have an additional positive effect on learning outcome. A mediator analysis showed that the effect of point of presentation time of prompts on learning outcome was mediated by strategy use during learning. Results are discussed with respect to new directions for assessment and support of self-regulated learning.


Spielt es nur eine Rolle “was” gepromptet wird oder auch “wann” gepromptet wird? Die Rolle des Darbietungszeitpunktes von Prompts beim selbstregulierten Lernen

In dieser Studie wurde überprüft, ob die Effektivität von Prompts von ihrem Darbietungszeitpunkt beim selbstregulierten Lernen abhängt. Basierend auf der Cognitive Load Theorie wurde erstens untersucht, inwiefern die Darbietung von Prompts während des Lernens anstatt vor dem Lernen einen positiven Effekt auf den Prozess und das Ergebnis selbstregulierten Lernens hat. Basierend auf einer Integration der Cognitive Load Theorie und einem Modell der Lernprozessregulation wurde zweitens untersucht, inwiefern die Darbietung von Prompts während des Lernens und gemäß einem theoretisch optimalen Verlauf der Lernprozessregulation einen positiven Effekt auf den Prozess und das Ergebnis selbstregulierten Lernens hat. In einer experimentellen Studie mit einfaktoriellem between-subjects Design, mit dem Darbietungszeitpunkt von Prompts als unabhängige Variable und Strategienutzung sowie Lernerfolg als abhängige Variablen, wurden 95 Schülerinnen und Schüler randomisiert einer der drei experimentellen Bedingungen zugeteilt. Während des selbstregulierten Lernens in einer computerbasierten Lernumgebung zu einem physikalischen Lerninhalt erhielten alle drei Bedingungen dieselben Prompts, während ihr Darbietungszeitpunkt zwischen den Bedingungen variierte (gemäß dem optimalen Regulationsverlauf/entgegen dem optimalen Regulationsverlauf/vor dem Lernen). Die Ergebnisse zeigen, dass die Darbietung von Prompts während des Lernens im Vergleich zu vor dem Lernen einen positiven Effekt auf den Lernerfolg hat. Weiterhin zeigen die Ergebnisse, dass eine Anpassung der Darbietung von Prompts an den optimalen Regulationsverlauf keinen zusätzlichen positiven Effekt auf den Lernerfolg hat. Eine Mediatoranalyse ergab zudem, dass der Effekt des Darbietungszeitpunktes der Prompts auf den Lernerfolg über die Strategienutzung während des Lernens vermittelt ist. Abschließend werden die Ergebnisse im Hinblick auf neue Entwicklungen in der Erfassung und Förderung des selbstregulierten Lernens diskutiert.

References

  • Atkinson, R.K. , Merrill, M.M. , Renkl, A. (2003). Transitioning from studying examples to solving problems: Effects of self-explanation prompts and fading worked-out steps. Journal of Educational Psychology, 95, 774–783. First citation in articleCrossrefGoogle Scholar

  • Azevedo, R. , Cromley, J.G. , Seibert, D. (2004). Does adaptive scaffolding facilitate students’ ability to regulate their learning with hypermedia? Contemporary Educational Psychology, 29, 344–370. First citation in articleCrossrefGoogle Scholar

  • Bannert, M. (2003). Effekte metakognitiver Lernhilfen auf den Wissenserwerb in vernetzten Lernumgebungen [Effects of metacognitive support on knowledge acquisition in net-based learning environments]. Zeitschrift für Pädagogische Psychologie, 17, 13–25. First citation in articleLinkGoogle Scholar

  • Bannert, M. (2006). Effects of reflection prompts when learning with hypermedia. Journal of Educational Computing Research, 4, 359–375. First citation in articleCrossrefGoogle Scholar

  • Baron, R.M. , Kenny, D.A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. First citation in articleCrossrefGoogle Scholar

  • Berthold, K. , Nückles, M. , Renkl, A. (2007). Do learning protocols support learning strategies and outcomes? The role of cognitive and metacognitive prompts. Learning and Instruction, 17, 564–577. First citation in articleCrossrefGoogle Scholar

  • Bielaczyc, K. , Pirolli, P.L. , Brown, A.L. (1995). Training in self-explanation and self-regulation strategies: Investigating the effects of knowledge acquisition activities on problem solving. Cognition and Instruction, 13, 221–252. First citation in articleCrossrefGoogle Scholar

  • Boekaerts, M. (1999). Self-regulated learning: Where are we today. International Journal of Educational Research, 31, 445–457. First citation in articleCrossrefGoogle Scholar

  • Brünken, R. , Plass, J.L. , Leutner, D. (2004). Assessment of cognitive load in multimedia learning with dual-task methodology: Auditory load and modality effects. Instructional Science, 32, 115–132. First citation in articleCrossrefGoogle Scholar

  • Chen, Z. , Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variable strategy. Child Development, 70, 1098–1120. First citation in articleCrossrefGoogle Scholar

  • Chi, M.T.H. , De Leeuw, N. , Chiu, M.-H. , LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–477. First citation in articleGoogle Scholar

  • Davis, E.A. (2003). Prompting middle school science students for productive reflection: Generic and directed prompts. Journal of the Learning Sciences, 12, 91–142. First citation in articleCrossrefGoogle Scholar

  • Davis, E.A. , Linn, M.C. (2000). Scaffolding students’ knowledge integration: Prompts for reflection in KIE. International Journal of Science Education, 22, 819–837. First citation in articleCrossrefGoogle Scholar

  • de Jong, T. , van Joolingen, W.R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68, 179–201. First citation in articleCrossrefGoogle Scholar

  • Ericsson, K.A. , Simon, H.A. (1980). Verbal reports as data. Psychological Review, 87, 215–251. First citation in articleCrossrefGoogle Scholar

  • Hattie, J. , Biggs, J. , Purdie, N. (1996). Effects of learning skills interventions on student learning: A meta analysis. Review of Educational Research, 66, 99–136. First citation in articleCrossrefGoogle Scholar

  • Howard-Rose, D. , Winne, P.H. (1993). Measuring component and sets of cognitive processes in self-regulated learning. Journal of Educational Psychology, 85, 591–604. First citation in articleCrossrefGoogle Scholar

  • Jamieson-Noel, D. , Winne, P.H. (2003). Comparing self-reports to traces of studying behavior as representations of students’ studying and achievement. Zeitschrift für Pädagogische Psychologie, 17, 159–171. First citation in articleLinkGoogle Scholar

  • Klahr, D. , Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1–48. First citation in articleCrossrefGoogle Scholar

  • Kröner, S. , Plass, J.L. , Leutner, D. (2005). Intelligence assessment with computer simulations. Intelligence, 33, 347–368. First citation in articleCrossrefGoogle Scholar

  • Kuhn, D. , Black, J. , Keselman, A. , Kaplan, D. (2000). The development of cognitive skills to support inquiry learning. Cognition and Instruction, 18, 495–523. First citation in articleCrossrefGoogle Scholar

  • Leopold, C. , Leutner, D. (2002). Der Einsatz von Lernstrategien in einer konkreten Lernsituation bei Schülern unterschiedlicher Jahrgangsstufen [The use of learning strategies in a concrete learning situation by students of different classes]. Zeitschrift für Pädagogik, 45. Beiheft, 240–258. First citation in articleGoogle Scholar

  • Lin, X. , Lehman, J.D. (1999). Supporting learning of variable control in a computer-based biology environment: Effects of prompting college students to reflect on their own thinking. Journal of Research in Science Teaching, 36, 837–858. First citation in articleCrossrefGoogle Scholar

  • Mayer, R.E. (2001). Multimedia learning. Cambridge: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Nesbit, J.C. , Adesope, O.O. (2006). Learning with concept and knowledge maps: A meta-analysis. Review of Educational Research, 76, 413–448. First citation in articleCrossrefGoogle Scholar

  • Novak, J.D. (1990). Concept mapping: A useful tool for science education. Journal of Research in Science Teaching, 27, 937–949. First citation in articleCrossrefGoogle Scholar

  • Novak, J.D. , Gowin, D.B. (1984). Learning how to learn. Cambridge: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • OECD-PISA. (2000). Fähigkeit zum selbstregulierten Lernen als fächerübergreifende Kompetenz [Self-regulated learning as cross-curricular competence]. Retrieved May 28, 2008 from www.mpib-berlin.mpg.de/pisa/CCCdt.pdf. First citation in articleGoogle Scholar

  • Paris, S.G. , Lipson, M.Y. , Wixson, K.K. (1983). Becoming a strategic reader. Contemporary Educational Psychologist, 8, 293–316. First citation in articleCrossrefGoogle Scholar

  • Ramm, G. , Prenzel, M. , Baumert, J. , Blum, W. , Lehmann, R. , Leutner, D. et al. (Eds.). (2006). PISA 2003: Dokumentation der Erhebungsinstrumente [PISA 2003: Documentation of test instruments]. Münster: Waxmann. First citation in articleGoogle Scholar

  • Reigeluth, C.M. , Stein, F.S. (1983). The elaboration theory of instruction. In C.M. Reigeluth (Ed.), Instructional-design theories and models: An overview of their current status (pp. 335–382). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Reisslein, J. , Atkinson, R.K. , Seeling, P. , Reisslein, M. (2005). Investigating the presentation and format of instructional prompts in an electrical circuit analysis computer-based learning environment. IEEE Transactions on Education, 48, 531–539. First citation in articleCrossrefGoogle Scholar

  • Rheinberg, R. , Vollmeyer, R. , Burns, B.D. (2001). FAM: Ein Fragebogen zur Erfassung aktueller Motivation in Lern- und Leistungssituationen [QCM: A questionnaire on current motivation in learning and performance situations]. Diagnostica, 47, 57–66. First citation in articleLinkGoogle Scholar

  • Schlagmüller, M. , Schneider, W. (2007). Würzburger Lesestrategiewissenstest für die Klassen 7–12 (WLST 7–12) [Würzburger test of reading strategy knowledge for grades 7–12]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Schmitz, B. (2001). Self-Monitoring zur Unterstützung des Transfers einer Schulung in Selbstregulation für Studierende. Eine prozessanalytische Untersuchung [Self-monitoring for supporting transfer of a training on self-regulation for students. A process-analytical study]. Zeitschrift für Pädagogische Psychologie, 15, 181–197. First citation in articleLinkGoogle Scholar

  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285. First citation in articleCrossrefGoogle Scholar

  • van Joolingen, W.R. , de Jong, T. (1997). An extended dual search space model of scientific discovery learning. Instructional Science, 25, 307–346. First citation in articleCrossrefGoogle Scholar

  • Veenman, M.V.J. (2005). The assessment of metacognitive skills: What can be learned from multi-method designs. In C. Artelt, B. Moschner (Eds.), Lernstrategien und Metakognition: Implikationen für Forschung und Praxis [Learning strategies and metacognition: Implications for research and practice] (pp. 77–99). Münster: Waxmann. First citation in articleGoogle Scholar

  • Veenman, M.V.J. , van Hout-Wolters, B.H.A.M. , Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1, 3–14. First citation in articleCrossrefGoogle Scholar

  • Vollmeyer, R. , Burns, B.D. (1996). Hypotheseninstruktion und Zielspezifität: Bedingungen, die das Erlernen und Kontrollieren eines komplexen Systems beeinflussen [Hypothesis instruction and goal specificity: Conditions that affect learning and controlling a complex system]. Zeitschrift für Experimentelle Psychologie, 43, 657–683. First citation in articleGoogle Scholar

  • Vollmeyer, R. , Rheinberg, F. (2000). Does motivation affect performance via persistence? Learning and Instruction, 10, 293–309. First citation in articleCrossrefGoogle Scholar

  • Weinstein, C.E. , Mayer, R.E. (1986). The teaching of learning strategies. In M.C. Wittrock (Ed.), Handbook of research on teaching (3rd ed., pp. 315–327). New York: Macmillan. First citation in articleGoogle Scholar

  • Winne, P.H. (2006). How software technologies can improve research on learning and bolster school reform. Educational Psychologist, 41, 5–17. First citation in articleCrossrefGoogle Scholar

  • Winne, P.H. , Hadwin, A.F. (1998). Studying as self-regulated learning. In D.J. Hacker, J. Dunlosky, A.C. Graesser (Eds.), Metacognition in education theory and practice (pp. 277–304). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Winne, P.H. , Perry, N.E. (2000). Measuring self-regulated learning. In M. Boekaerts, P. Pintrich, M. Zeidner (Eds.), Handbook of self-regulation (pp. 531–566). Orlando, FL: Academic Press. First citation in articleCrossrefGoogle Scholar

  • Wirth, J. (2004). Selbstregulation von Lernprozessen [Self-regulation of learning processes]. Münster: Waxmann. First citation in articleGoogle Scholar

  • Wirth, J. , Leutner, D. (2006). Selbstregulation beim Lernen in interaktiven Lernumgebungen [Self-regulation while learning in interactive learning environments]. In H. Mandl, H.F. Friedrich (Eds.), Handbuch Lernstrategien [Handbook on learning strategies] (pp. 172–184). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Zimmerman, B.J. (1989). Models of self-regulated learning and academic achievement. In B.J. Zimmerman, D.H. Schunk (Eds.), Self-regulated learning and academic achievement. Theory, research and practice (pp. 1–25), New York: Springer. First citation in articleCrossrefGoogle Scholar

  • Zimmerman, B.J. (2000). Attaining self-regulation: A social cognitive perspective. In M. Boekearts, P.R. Pintrich, M. Zeidner (Eds.), Handbook of self-regulation (pp. 13–39): San Diego, CA: Academic Press. First citation in articleCrossrefGoogle Scholar