Skip to main content
Contributions

Inquiry Learning

Multilevel Support with Respect to Inquiry, Explanations and Regulation During an Inquiry Cycle

Published Online:https://doi.org/10.1024/1010-0652.23.2.117

Seventy-nine students from three science classes conducted simulation-based scientific experiments. They received one of three kinds of instructional support in order to encourage scientific reasoning during inquiry learning: (1) basic inquiry support, (2) advanced inquiry support including explanation prompts, or (3) advanced inquiry support including explanation prompts and regulation prompts. Knowledge test as well as application test results show that students with regulation prompts significantly outperformed students with explanation prompts (knowledge: d = 0.65; application: d = 0.80) and students with basic inquiry support only (knowledge: d = 0.57; application: d = 0.83). The results are in line with a theoretical focus on inquiry learning according to which students need specific support with respect to the regulation of scientific reasoning when developing explanations during experimentation activities.


Inquiry-Learning: Mehrstufige Unterstützung hinsichtlich Inquiry, Erklärungen und Regulation während eines Inquiry-Zyklus

Siebenundneunzig Gymnasialschüler aus drei Schulklassen führten naturwissenschaftliche Experimente mithilfe von Simulationssoftware durch. Die Schüler erhielten eine von drei Stufen der Unterstützung beim Experimentieren: (1) nur Inquiry-Unterstützung, (2) erweiterte Inquiry-Unterstützung mit Erklärungsprompts oder (3) erweiterte Inquiry-Unterstützung, Erklärungsprompts und Regulationsprompts. Die Ergebnisse des Wissenstests und des Anwendungstests zeigen, dass Schüler, die Regulationsprompts erhalten haben, signifikant besser abschnitten als Schüler mit Erklärungsprompts (Wissen: d = 0.65; Anwendung: d = 0.80) und als Schüler nur mit Inquiry-Unterstützung (Wissen: d = 0.57; Anwendung: d = 0.83). Die Ergebnisse stimmen mit dem theoretischen Fokus auf Inquiry-Learning überein, wonach Schüler spezifische Unterstützung zur Regulation erhalten sollten, um wissenschaftliches Schlussfolgern während des Erklärens bei der Durchführung von Experimenten zu fördern.

References

  • Atkinson, R.K. , Renkl, A. , Merrill, M.M. (2003). 51. Transitioning from studying examples to solving problems: Combining fading with prompting fosters learning. Journal of Educational Psychology, 95, 774–785. First citation in articleCrossrefGoogle Scholar

  • Bell, B. (1985). Students’ ideas about plant nutrition: What are they? Journal of Biological Education, 19, 213–218. First citation in articleCrossrefGoogle Scholar

  • Bielaczyc, K. , Pirolli, P. , Brown, A.L. (1995). Training in self-explanation and self-regulation strategies: Investigating the effects of knowledge acquisition activities on problem solving. Cognition and Instruction, 13, 221–252. First citation in articleCrossrefGoogle Scholar

  • Brown, A.L. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. In F.E. Weinert, R.H. Kluwe (Eds.), Metacognition, motivation, and understanding (pp. 65–116). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Chi, M.T.H. , Bassok, M. , Lewis, M.W. , Reimann, P. , Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182. First citation in articleCrossrefGoogle Scholar

  • Chi, M.T.H. , de Leeuw, N. , Chiu, M. , LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–477. First citation in articleGoogle Scholar

  • Chinn, C.A. , Malhotra, B.A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86, 175–218. First citation in articleCrossrefGoogle Scholar

  • Coleman, E.B. (1998). Using explanatory knowledge during collaborative problem solving in science. The Journal of the Learning Sciences, 7, 387–427. First citation in articleCrossrefGoogle Scholar

  • Conati, C. , VanLehn, K. (2000). Toward computer-based support of meta-cognitive skills: A computational framework to coach self-explanation. International Journal of Artificial Intelligence in Education, 11, 389–415. First citation in articleGoogle Scholar

  • de Jong, T. , Joolingen, W. van (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68, 179–201. First citation in articleCrossrefGoogle Scholar

  • Fischer, H.E. , Klemm, K. , Leutner, D. , Sumfleth, E. , Thiemann, R. , Wirth, J. (2005). Framework for empirical research on science teaching and learning. Journal of Science Teacher Education, 16, 309–349. First citation in articleCrossrefGoogle Scholar

  • Flavell, J. (1979). Metacognition and cognitive monitoring. American Psychologist, 34, 906–911. First citation in articleCrossrefGoogle Scholar

  • Gerjets, P. , Scheiter, K. , Catrambone, R. (2006). Can learning from molar and modular worked examples be enhanced by providing instructional explanations and prompting self-explanations? Learning and Instruction, 16, 104–121. First citation in articleCrossrefGoogle Scholar

  • Hmelo-Silver, C.E. , Duncan, R.G. , Chinn, C.A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42, 99–107. First citation in articleCrossrefGoogle Scholar

  • Hoppe, H.U. , Gaßner, K. (2002). Integrating collaborative concept mapping tools with group memory and retrieval functions. In G. Stahl (Ed.), International conference on Computer Supported Collaborative Learning: Foundations for a CSCL Community (pp. 716–725). Mahwah, NJ: Erlbaum. First citation in articleCrossrefGoogle Scholar

  • Joolingen, W.R. van (2004). A tool for the support of qualitative inquiry modeling. In C.K.L. Kinshuk, E. Sutinen, D. Sampson, I. Aedo, L. Uden, E. Kähkönen (Eds.), Proceedings of the 4th IEEE conference on advanced learning technologies (pp. 96–100). Washington: IEEE Computer Society. First citation in articleCrossrefGoogle Scholar

  • Joolingen, W.R. van , de Jong, T. (1991). Supporting hypothesis generation by learners exploring an interactive computer simulation. Instructional Science, 20, 389–404. First citation in articleGoogle Scholar

  • Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research on Science Teaching, 40, 898–921. First citation in articleCrossrefGoogle Scholar

  • Kirschner, P.A. , Sweller, J. , Clark, R.E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41, 75–86. First citation in articleCrossrefGoogle Scholar

  • Künsting, J. , Thillmann, H. , Wirth, J. , Fischer, H. , Leutner, D. (2008). Computerbasierte Diagnose von Strategien des Experimentierens im naturwissenschaftlichen Unterricht [Computer-based assessment of experimentation strategies in sciences learning]. Psychologie in Erziehung und Unterricht, 55, 1–15. First citation in articleGoogle Scholar

  • Leutner, D. (1993). Guided discovery learning with computer-based simulation games: Effects of adaptive and nonadaptive instructional support. Learning and Instruction, 3, 113–132. First citation in articleCrossrefGoogle Scholar

  • Leutner, D. (2004). Instructional-design principles for adaptivity in open learning environments. In N.M. Seel, S. Dijkstra (Eds.), Curriculum, plans and processes of instructional design: International perspectives (pp. 289–307). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Leutner, D. , Leopold, C. (2006). Selbstregulation beim Lernen aus Sachtexten [Self-regulation while learning from expository text]. In H. Mandl, H.F. Friedrich (Eds.), Handbuch Lernstrategien [Handbook of learning strategies] (pp. 162–171). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Lin, X. , Lehman, J.D. (1999). Supporting learning of variable control in a computer-based biology environment: Effects of promoting college students to reflect on their own thinking. Journal of Research in Science Teaching, 36, 837–858. First citation in articleCrossrefGoogle Scholar

  • Linn, M.C. , Slotta, J.D. (2000). WISE science. Educational Leadership, 58, 29–32. First citation in articleGoogle Scholar

  • Löhner, S. , Joolingen, W.R. van , Savelsbergh, E.R. , Hout-Wolters, B.H.A.M. van (2005). Students’ reasoning during modeling in an inquiry learning environment. Computers in Human Behavior, 21, 441–461. First citation in articleCrossrefGoogle Scholar

  • Mayer, R.E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59, 14–19. First citation in articleCrossrefGoogle Scholar

  • McNeill, K.L. , Lizotte, D. J , Krajcik, J. , Marx, R.W. (2006). Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. The Journal of the Learning Sciences, 15, 153–191. First citation in articleCrossrefGoogle Scholar

  • National Research Council. (1996). National science education standards. Washington: National Academy Press. First citation in articleGoogle Scholar

  • Quintana, C. , Reiser, B.J. , Davis, E.A. , Krajcik, J. , Fretz, E. , Duncan, R. et al. (2004). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13, 337–387. First citation in articleCrossrefGoogle Scholar

  • Rips, L. (1998). Reasoning. In W. Bechtel, G. Graham (Eds.), A companion to cognitive science (pp. 299–305). Malden: Blackwell. First citation in articleGoogle Scholar

  • Ruberg, L.F. , Baro, J.A. (1999). BioBLAST: A multimedia learning environment to support student inquiry in the biological sciences. In W.C. Bozeman (Ed.), Educational technology: Best practices from America’s schools (2nd ed., pp. 62–71). Larchmont: Eye on Education. First citation in articleGoogle Scholar

  • Safayeni, F. , Derbentseva, N. , Canas, A.J. (2005). Concept maps: A theoretical note on concepts and the need for cyclic concept maps. Journal of Research in Science Teaching, 42, 741–766. First citation in articleCrossrefGoogle Scholar

  • Sandoval, W.A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. The Journal of the Learning Sciences, 12, 5–51. First citation in articleCrossrefGoogle Scholar

  • Savelsbergh, E.R. , de Jong, T. , Fergusen-Hessler, M.G.M. (1997). The importance of enhanced problem representation: On the role of elaborations in physics problem-solving (Report No. IST-MEMO-97–04). Enschede: Twente University. First citation in articleGoogle Scholar

  • Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science, 26, 113–125. First citation in articleCrossrefGoogle Scholar

  • The TIMSS International Study Center. (1995). Third international mathematics and science study. Boston: Boston College. First citation in articleGoogle Scholar

  • Veenman, M.V.J. , Verheij, J. (2003). Technical students’ meta-cognitive skills: Relating general vs. specific metacognitive skills to study success. Learning and Individual Differences, 13, 259–272. First citation in articleCrossrefGoogle Scholar

  • Veenman, M.V.J. , Elshout, J.J. , Busato, V.V. (1994). Metacognitive mediation in learning with computer-based simulations. Computers in Human Behavior, 10, 93–106. First citation in articleCrossrefGoogle Scholar

  • White, B. , Frederiksen, J. (2000). Metacognitive facilitation: An approach to making scientific inquiry accessible to all. In J. Minstrell, E. van Zee (Eds.), Inquiring into inquiry learning and teaching in science (pp. 331–370). Washington: American Association for the Advancement of Science. First citation in articleGoogle Scholar

  • Wichmann, A. , Harrer, A. (2007, August). Adaptation of explanation-based inquiry scripts using IMSLD. Paper presented at the 12th biannual conference of the European Association for Research on Learning and Instruction (EARLI), Budapest, Hungary. First citation in articleGoogle Scholar

  • Wichmann, A. , Kraemer, T. , Jonassen, D. (2005, August). Exploring the benefits of using metacognitive strategies within scientific inquiry. Paper presented at the 11th biannual conference of the European Association for Research on Learning and Instruction (EARLI), Nikosia, Cyprus. First citation in articleGoogle Scholar

  • Wirth, J. , Leutner, D. (2006). Selbstregulation beim Lernen in interaktiven Lernumgebungen [Self-regulation while learning in interactive learning environments]. In H. Mandl, H.F. Friedrich (Hrsg.), Handbuch Lernstrategien [Handbook of learning strategies] (pp. 172–184). Göttingen: Hogrefe. First citation in articleGoogle Scholar