skip to main content
10.1145/1013115.1013156acmconferencesArticle/Chapter ViewAbstractPublication PagesdisConference Proceedingsconference-collections
Article

PHOXEL-SPACE: an interface for exploring volumetric data with physical voxels

Published:01 August 2004Publication History

ABSTRACT

Three-dimensional datasets (voxel datasets), generated by different types of sensing or computer simulations, are quickly becoming crucial to various disciplines - from biomedicine to geophysics. Phoxel-Space is an interface that enables the exploration of these datasets through physical materials. It aims at overcoming the limitations of traditional planar displays by allowing users to intuitively navigate and understand complex 3-dimensional datasets. The system works by allowing the user to manipulate a freeform geometry whose surface intersects a voxel dataset. The intersected voxel values are projected back onto the surface of the physical material to reveal a non-planar section of the dataset. The paper describes how the interface can be used as a representational aid in several example application domains, overcoming many limitations of conventional planar displays.

References

  1. Bryson, S. 1996. Virtual reality in scientific visualization. In Communications of the ACM, Vol. 39, No. 5, pp. 62--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bryson, S. and Levit, C. 1991. The Virtual Windtunnel: An Environment for the Exploration of Three-Dimensional Unsteady Flows. In Proceedings of IEEE Visualization '91, pp. 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Burdea, G., Patounakis, G., Popescu, V., and Weiss, R. 1999. Virtual Reality-based Training for the Diagnosis of Prostate Cancer. In IEEE Transactions on Biomedical Engineering, Vol. 46, No. 10, pp. 1253--1260.Google ScholarGoogle ScholarCross RefCross Ref
  4. Chang, Y. J., Coddington, P., and Hutchens, K. 1998. The NPAC/OLDA Visible Human Viewer, University of Adelaide, Austrialia. http://www.dhpc.adelaide.edu.au/projects/vishuman2/Google ScholarGoogle Scholar
  5. Hung, C. S., Huang, C. F., and Ouhyoung, M. 1998. Fast Volume Rendering for Medical Image Data. In Proceedings of RAMS '98 (Real-time and Media Systems), pp. 49--55.Google ScholarGoogle Scholar
  6. Debevec, P. E., and Malik, J. 1997. Recovering High Dynamic Range Radiance Maps From Photographs. In Proceedings of ACM SIGGRAPH 1997, pp. 369 -- 378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Drebin, R. A., Carpenter, L., and Hanrahan, P. 1998. Volume Rendering. In Proceedings of ACM SIGGRAPH 1998, pp. 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Goble, J. C., Hinckley, K., Pausch, R., Snell, J. W., Kassell, N. F. 1995. Two-handed Spatial Interface Tools for Neurosurgical Planning. In Computer, Vol. 28, No. 7, pp. 20--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Grimson, W. E. L., Ettinger, G. J., Kapur, T., Leventon, M. E., Wells, W. M. III, and Kikinis, R. 1996. Utilizing Segmented MRI Data in Image-Guided Surgery. In International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI), Vol. 11, pp. 1367--1397.Google ScholarGoogle ScholarCross RefCross Ref
  10. Grimson, W. E. L., Ettinger, G. J., White, S. J., Lozano-Perez T., Wells, W. M. III, and Kikinis, R. 1996. An Automatic Registration Method for Frameless Stereotaxy, Image Guided Surgery, and Enhanced Reality Visualization, In IEEE Transactions on Medical Imaging, Vol. 15, No. 2, pp. 129--140.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hinckley, K., Pausch, R., Goble, J. C., and Kassell, N. F. 1994. Passive Real-World Interface Props for Neurosurgical Visualization, In Proceedings of ACM Conference on Human Factors in Computing Systems (CHI '94), pp. 452--458. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kniss, J., Hansen, C., Greiner, M., and Robinson, T. 2002. Volume Rendering Multivariate Data to Visualize Meteorological Simulations: A Case Study. In IEEE TCVG Symposium on Visualization. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lichtenbelt, B., Crane, R., and Naqvi, S. 1998. Introduction to Volume Rendering. Prentice-Hall, Englewood Cliffs, New Jersey. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Massie, T. and Salisbury, J. 1994. The PHANTOM haptic interface: a device for probing virtual objects. In Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Chicago, IL. November 1994.Google ScholarGoogle Scholar
  15. Nadeau, D. R. and Bailey, M. J. 2000. Volume Visualization using Physical Models. 2000. In Proceedings of Visualization 2000, pp. 497--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. North, C., Shneiderman, B., and Plaisant, C. 1996. The HCIL Visible Human Explorer, University of Maryland at College Park. http://www.cs.umd.edu/hcil/visible-human/vhe.shtmlGoogle ScholarGoogle Scholar
  17. Piper, B., Ratti, C., and Ishii, H. 2002. Illuminating Clay: A 3-D Tangible Interface for Landscape Analysis. In Proceedings of Conference on Human Factors in Computing Systems (CHI '02), pp. 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Raskar, R., Welch, G., Low, K-L., and Bandyopadhyay, D. 2001. Shader Lamps: Animating Real Objects with Image Based Illumination. In Proceedings of Eurographics Workshop on Rendering, June 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ratti C., Wang Y., Ishii H., Piper B., Frenchman D. 2004. Tangible User Interfaces (TUIs): a novel paradigm for GIS. In Transactions in GIS (forthcoming).Google ScholarGoogle Scholar
  20. Roger A., C., Han-Wei, S., and Nelson, M. 2000. Flow Visualization Techniques For CFD Using Volume Rendering. In Proceedings of the 9th international Symposium on Flow Visualization, August 2000.Google ScholarGoogle Scholar
  21. Rushmeier, H., Hamins, A., and Choi, M. Y. 1995. Volume Rendering of Pool Fire Data. In IEEE Computer Graphics and Applications, Vol. 15, No. 4, pp. 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Underkoffler, J., Ullmer, B., and Ishii, H. 1999. Emancipated Pixels: Real-World Graphics In The Luminous Room. In Proceedings of ACM SIGGRAPH 1999, pp. 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Van Dam, A., Forsberg, A. S., Laidlaw, D. H., LaViola, J. J., and Simpson, R. M. 2000. Immersive VR for Scientific Visualization: A Progress Report. In IEEE Computer Graphics and Applications, Vol. 20, No. 6, pp. 26--52. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader