skip to main content
article

Keyframe-based tracking for rotoscoping and animation

Published:01 August 2004Publication History
Skip Abstract Section

Abstract

We describe a new approach to rotoscoping --- the process of tracking contours in a video sequence --- that combines computer vision with user interaction. In order to track contours in video, the user specifies curves in two or more frames; these curves are used as keyframes by a computer-vision-based tracking algorithm. The user may interactively refine the curves and then restart the tracking algorithm. Combining computer vision with user interaction allows our system to track any sequence with significantly less effort than interpolation-based systems --- and with better reliability than "pure" computer vision systems. Our tracking algorithm is cast as a spacetime optimization problem that solves for time-varying curve shapes based on an input video sequence and user-specified constraints. We demonstrate our system with several rotoscoped examples. Additionally, we show how these rotoscoped contours can be used to help create cartoon animation by attaching user-drawn strokes to the tracked contours.

Skip Supplemental Material Section

Supplemental Material

References

  1. AGARWALA, A. 2002. SnakeToonz: A Semi-Automatic Approach to Creating Cel Animation from Video. In NPAR 2002: Second International Symposium on Non Photorealistic Rendering, 139--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. BEIER, T., AND NEELY, S. 1992. Feature-based image metamorphosis. In Computer Graphics (Proceedings of SIGGRAPH 92), vol. 26, 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. BERGEN, J. R., ANANDAN, P., HANNA, K. J., AND HINGORANI, R. 1992. Hierarchical model-based motion estimation. In European Conference on Computer Vision, 237--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. BLACK, M. J., AND ANANDAN, P. 1996. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63, 1, 75--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. BLAKE, A., AND ISARD, M. 1998. Active Contours, Springer-Verlag.Google ScholarGoogle Scholar
  6. BURTNYK, N., AND WEIN, M. 1976. Interactive skeleton techniques for enhancing motion dynamics in key frame animation. CACM 19 (Oct.), 564--569. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. CHUANG, Y.-Y., AGARWALA, A., CURLESS, B., SALESIN, D. H., AND SZELISKI, R. 2002. Video matting of complex scenes. ACM Transactions on Graphics 21, 3, 243--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. COHEN, M. F. 1992. Interactive spacetime control for animation. In Computer Graphics (Proceedings of SIGGRAPH 92), vol. 26, 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. FLEISCHER, M., 1917. Method of Producing Moving Picture Cartoons. US Patent no. 1,242,674.Google ScholarGoogle Scholar
  10. GEIGER, D., GUPTA, A., COSTA, L., AND VLONTZOS, J. 1995. Dynamic programming for detecting, tracking and matching deformable contours. IEEE Transactions On Pattern Analysis and Machine Intelligence 17, 3, 294--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. GOLDMAN, D., 2003. Computer graphics supervisor, Industrial Light & Magic, personal communication.Google ScholarGoogle Scholar
  12. HALL, J., GREENHILL, D., AND JONES, G. 1997. Segmenting film sequences using active surfaces. In International Conference on Image Processing (ICIP), 751--754. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. HOCH, M., AND LITWINOWICZ, P. C. 1996. A semi-automatic system for edge tracking with snakes. The Visual Computer 12, 2, 75--83.Google ScholarGoogle ScholarCross RefCross Ref
  14. HSU, S. C., AND LEE, I. H. H. 1994. Drawing and animation using skeletal strokes. In Proceedings of SIGGRAPH 94, 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. IRANI, M. 2002. Multi-Frame Correspondence Estimation Using Subspace Constraints. International Journal of Computer Vision 48, 3, 173--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES, J. F., AND FINKELSTEIN, A. 2002. WYSIWYG NPR: Drawing Strokes Directly on 3D Models. ACM Transactions on Graphics 21, 3, 755--762. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1987. Snakes: Active contour models. International Journal of Computer Vision 1, 4, 321--331.Google ScholarGoogle ScholarCross RefCross Ref
  18. KORT, A. 2002. Computer aided inbetweening. In NPAR 2002: Second International Symposium on Non Photorealistic Rendering, 125--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. LINKLATER, R., 2001. Waking Life. 20th Century Fox.Google ScholarGoogle Scholar
  20. LITWINOWICZ, P., AND WILLIAMS, L. 1994. Animating images with drawings. In Proceedings of SIGGRAPH 94, 409--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. LITWINOWICZ, P. 1997. Processing images and video for an impressionist effect. In Proceedings of SIGGRAPH 97, 407--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. LUCAS, B. D., AND KANADE, T. 1981. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI'81), 674--679.Google ScholarGoogle Scholar
  23. LUO, H., AND ELEFTHERIADIS, A. 1999. Spatial temporal active contour interpolation for semi-automatic video object generation. In International Conference on Image Processing (ICIP), 944--948.Google ScholarGoogle ScholarCross RefCross Ref
  24. MEIER, B. J. 1996. Painterly rendering for animation. In Proceedings of SIGGRAPH 96, 477--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. MITSUNAGA, T., YOKOYAMA, T., AND TOTSUKA, T. 1995. Autokey: Human assisted key extraction. In Proceedings of SIGGRAPH 95, 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. MORTENSEN, E. N., AND BARRETT, W. A. 1995. Intelligent scissors for image composition. In Proceedings of SIGGRAPH 95, 191--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. MORTENSEN, E. N., 1999. Vision-assisted image editing. Computer Graphics 33, 4 (Nov.), 55--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. NOCEDAL, J., AND WRIGHT, S. J. 1999. Numerical Optimization. Springer.Google ScholarGoogle Scholar
  29. SEDERBERG, T. W., AND GREENWOOD, E. 1992. A physically based approach to 2d shape blending. In Computer Graphics (Proceedings of SIGGRAPH 92), vol. 26, 25--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. SEDERBERG, T. W., GAO, P., WANG, G., AND MU, H. 1993. 2d shape blending: An intrinsic solution to the vertex path problem. In Proceedings of SIGGRAPH 93, 15--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. SMITH, A. R., AND BLINN, J. F. 1996. Blue screen matting. In Proceedings of SIGGRAPH 96, 259--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. STEIHAUG, T. 1983. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal on Numerical Analysis 20, 3, 626--637.Google ScholarGoogle ScholarCross RefCross Ref
  33. STEWART, S., 2003. Confessions of a roto artist: Three rules for better mattes. http://www.pinnaclesys.com/SupportFiles/Rotoscoping.pdf.Google ScholarGoogle Scholar
  34. SZELISKI, R. 1990. Fast surface interpolation using hierarchical basis functions. IEEE Transactions On Pattern Analysis and Machine Intelligence 12, 6, 513--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. TORRESANI, L., AND BREGLER, C. 2002. Space-time tracking. In European Conference on Computer Vision, 801--802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In Computer Graphics (Proceedings of SIGGRAPH 88), vol. 22, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Keyframe-based tracking for rotoscoping and animation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 23, Issue 3
            August 2004
            684 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1015706
            Issue’s Table of Contents

            Copyright © 2004 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 August 2004
            Published in tog Volume 23, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader