skip to main content
10.1145/1031171.1031254acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
Article

Computing consistent query answers using conflict hypergraphs

Published:13 November 2004Publication History

ABSTRACT

A consistent query answer in a possibly inconsistent database is an answer which is true in every (minimal) repair of the database. We present here a practical framework for computing consistent query answers for large, possibly inconsistent relational databases. We consider relational algebra queries without projection, and denial constraints. Because our framework handles union queries, we can effectively (and efficiently) extract indefinite disjunctive information from an inconsistent database. We describe a number of novel optimization techniques applicable in this context and summarize experimental results that validate our approach.

References

  1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent Databases. In ACM Symposium on Principles of Database Systems (PODS), pages 68--79, 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Arenas, L. Bertossi, and J. Chomicki. Answer Sets for Consistent Query Answering in Inconsistent Databases. Theory and Practice of Logic Programming, 3(4--5):393--424, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad. Scalar Aggregation in Inconsistent Databases. Theoretical Computer Science, 296(3):405--434, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Arenas, L. Bertossi, and M. Kifer. Applications of Annotated Predicate Calculus to Querying Inconsistent Databases. In International Conference on Computational Logic, pages 926--941. Springer-Verlag, LNCS 1861, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. Barcelo and L. Bertossi. Logic Programs for Querying Inconsistent Databases. In International Symposium on Practical Aspects of Declarative Languages (PADL), pages 208--222. Springer-Verlag, LNCS 2562, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L. Bertossi and J. Chomicki. Query Answering in Inconsistent Databases. In J. Chomicki, R. van der Meyden, and G. Snake, editors, Logics for Emerging Applications of Databases, pages 43--83. Springer-Verlag, 2003.]]Google ScholarGoogle Scholar
  8. L. Bertossi, J. Chomicki, A. Cortes, and C. Gutierrez. Consistent Answers from Integrated Data Sources. In International Conference on Flexible Query Answering Systems (FQAS), pages 71--85, Copenhagen, Denmark, October 2002. Springer-Verlag.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. Bravo and L. Bertossi. Logic Programs for Consistently Querying Data Integration Systems. In International Joint Conference on Artificial Intelligence (IJCAI), pages 10--15, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. F. Bry. Query Answering in Information Systems with Integrity Constraints. In IFIP WG 11.5 Working Conference on Integrity and Control in Information Systems, pages 113--130. Chapman & Hall, 1997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Cali, D. Lembo, and R. Rosati. On the Decidability and Complexity of Query Answering over Inconsistent and Incomplete Databases. In ACM Symposium on Principles of Database Systems (PODS), pages 260--271, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Celle and L. Bertossi. Querying Inconsistent Databases: Algorithms and Implementation. In International Conference on Computational Logic, pages 942--956. Springer-Verlag, LNCS 1861, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Chomicki and J. Marcinkowski. Minimal-Change Integrity Maintenance Using Tuple Deletions. Information and Computation, 2004. To appear. Earlier version: Technical Report cs.DB/0212004, arXiv.org e-Print archive.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving in DLV. In J. Minker, editor, Logic-Based Artificial Intelligence, pages 79--103. Kluwer, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. Eiter, M. Fink, G. Greco, and D. Lembo. Efficient Evaluation of Logic Programs for Querying Data Integration Systems. In International Conference on Logic Programming (ICLP), pages 163--177, 2003.]]Google ScholarGoogle Scholar
  16. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and Query Answering. In International Conference on Database Theory (ICDT), pages 207--224. Springer-Verlag, LNCS 2572, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Fuxman and R. Miller. Towards Inconsistency Management in Data Integration Systems. In IJCAI-03 Workshop on Information Integration on the Web (IIWeb-03), 2003.]]Google ScholarGoogle Scholar
  18. G. Greco, S. Greco, and E. Zumpano. A Logic Programming Approach to the Integration, Repairing and Querying of Inconsistent Databases. In International Conference on Logic Programming (ICLP), pages 348--364. Springer-Verlag, LNCS 2237, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. G. Greco, S. Greco, and E. Zumpano. A Logical Framework for Querying and Repairing Inconsistent Databases. IEEE Transactions on Knowledge and Data Engineering, 15(6):1389--1408, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Y. Halevy. Answering Queries Using Views: A Survey. VLDB Journal, 10(4):270--294, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. C. Kanellakis. Elements of Relational Database Theory. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, volume~B, chapter~17, pages 1073--1158. Elsevier/MIT Press, 1990.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Van Nieuwenborgh and D. Vermeir. Preferred Answer Sets for Ordered Logic Programs. In European Conference on Logics for Artificial Intelligence (JELIA), pages 432--443. Springer-Verlag, LNAI 2424, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Wijsen. Condensed Representation of Database Repairs for Consistent Query Answering. In International Conference on Database Theory (ICDT), pages 378--393. Springer-Verlag, LNCS 2572, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Computing consistent query answers using conflict hypergraphs

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              CIKM '04: Proceedings of the thirteenth ACM international conference on Information and knowledge management
              November 2004
              678 pages
              ISBN:1581138741
              DOI:10.1145/1031171

              Copyright © 2004 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 13 November 2004

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • Article

              Acceptance Rates

              Overall Acceptance Rate1,861of8,427submissions,22%

              Upcoming Conference

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader