skip to main content
article

Stable but nondissipative water

Published:01 January 2005Publication History
Skip Abstract Section

Abstract

This article presents a physically-based technique for simulating water. This work is motivated by the "stable fluids" method, developed by Stam [1999], to handle gaseous fluids. We extend this technique to water, which calls for the development of methods for modeling multiphase fluids and suppressing dissipation. We construct a multiphase fluid formulation by combining the Navier--Stokes equations with the level set method. By adopting constrained interpolation profile (CIP)-based advection, we reduce the numerical dissipation and diffusion significantly. We further reduce the dissipation by converting potentially dissipative cells into droplets or bubbles that undergo Lagrangian motion. Due to the multiphase formulation, the proposed method properly simulates the interaction of water with surrounding air, instead of simulating water in a void space. Moreover, the introduction of the nondissipative technique means that, in contrast to previous methods, the simulated water does not unnecessarily lose mass, and its motion is not damped to an unphysical extent. Experiments showed that the proposed method is stable and runs fast. It is demonstrated that two-dimensional simulation runs in real-time.

References

  1. Brackbill, J. U., Kothe, D. B., and Zemach, C. 1992. A continuum method for modeling surface tension. J. Comp. Phys. 100, 335--354. Google ScholarGoogle Scholar
  2. Carlson, M., Mucha, R. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2004) 23, 3, 377--384. Google ScholarGoogle Scholar
  3. Chen, J. X. and Lobo, N. D. V. 1995. Toward interactive-rate simulation of fluids with moving obstacles using Navier--Stokes equations. Graph. Models Image Process. 57, 2, 107--116. Google ScholarGoogle Scholar
  4. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2002) 21, 3, 736--744. Google ScholarGoogle Scholar
  5. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. Comput. Graph. (Proceedings of ACM SIGGRAPH 2001) 35, 15--22. Google ScholarGoogle Scholar
  6. Feldman, B. E., O'Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2003) 22, 3, 708--715. Google ScholarGoogle Scholar
  7. Foster, N. and Fedkiw, R. 2001. Practical animation of liquids. Comput. Graph. (Proceedings of ACM SIGGRAPH 2001) 35, 23--30. Google ScholarGoogle Scholar
  8. Foster, N. and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 5, 471--483. Google ScholarGoogle Scholar
  9. Foster, N. and Metaxas, D. 1997a. Controlling fluid animation. In Comput. Graph. Inter. 97, 178--188. Google ScholarGoogle Scholar
  10. Foster, N. and Metaxas, D. 1997b. Modeling the motion of a hot, turbulent gas. Comput. Graph. (Proceedings of ACM SIGGRAPH '97) 31, Annual Conference Series, 181--188. Google ScholarGoogle Scholar
  11. Golub, G. H. and Loan, C. F. V. 1996. Matrix Computations. The John Hopkins Univserity Press.Google ScholarGoogle Scholar
  12. Harlow, F. H. and Welch, J. E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 12, 2182--2189.Google ScholarGoogle Scholar
  13. Kass, M. and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. Comput. Graph. (Proceedings of ACM SIGGRAPH '90) 24, 4, 49--57. Google ScholarGoogle Scholar
  14. Lorensen, W. E. and Cline, H. E. 1987. Marching cubes: A high resolution 3D surface construction algorithm. Comput. Graph. (Proceedings of ACM SIGGRAPH '87) 21, 4, 163--169. Google ScholarGoogle Scholar
  15. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2004) 23, 3, 457--462. Google ScholarGoogle Scholar
  16. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2004) 23, 3, 449--456. Google ScholarGoogle Scholar
  17. Miller, G. and Pearce, A. 1989. Globular dynamics: A connected particle system for animating viscous fluids. Comput. Graph. 13, 3, 305--309.Google ScholarGoogle Scholar
  18. O'Brien, J. and Hodgins, J. 1995. Dynamic simulation of splashing fluids. In Proceedings of Computer Animation 95, 198--205. Google ScholarGoogle Scholar
  19. O'Brien, T. G. G. A. W. B. J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2004) 23, 3, 463--468. Google ScholarGoogle Scholar
  20. Osher, S. and Fedkiw, R. 2002. The Level Set Method and Dynamic Implicit Surfaces. Springer-Verlag, New York.Google ScholarGoogle Scholar
  21. Osher, S. and Sethian, J. A. 1988. Fronts propagating with curvature dependent speed: Algorithms based in hamilton-jacobi formulations. J. Comp. Phys. 79, 12--49. Google ScholarGoogle Scholar
  22. Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M. 1999. A pde-based fast local level set method. J. Comp. Phys. 155, 410--438. Google ScholarGoogle Scholar
  23. Premože, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. T. 2003. Particle-based simulation of fluids. In Eurographics 2003 Proceedings. Blackwell Publishers, 401--410.Google ScholarGoogle Scholar
  24. Rasmussen, N., Nguyen, D. Q., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2003) 22, 3, 703--707. Google ScholarGoogle Scholar
  25. Sethian, J. A. 1996. Fast marching level set methods for three dimensional photolithography development. SPIE 2726, 261--272.Google ScholarGoogle Scholar
  26. Stam, J. 1999. Stable fluids. Comput. Graph. (Proceedings of ACM SIGGRAPH '99) 33, Annual Conference Series, 121--128. Google ScholarGoogle Scholar
  27. Stam, J. and Fiume, E. 1995. Depicting fire and other gaseous phenomena using diffusion processes. Comput. Graph. (Proceedings of ACM SIGGRAPH '95) 29, Annual Conference Series, 129--136. Google ScholarGoogle Scholar
  28. Staniforth, A. and Côtè, J. 1991. Semi-lagrangian integration scheme for atmospheric model---a review. Mon. Weather Rev. 119, 12, 2206--2223.Google ScholarGoogle Scholar
  29. Sussman, M., Fatemi, E., Smereka, P., and Osher, S. 1998. An improved level set method for incompressible two-phase flows. Comput. Fluids 27, 663--680.Google ScholarGoogle Scholar
  30. Sussman, M., Smereka, P., and Osher, S. 1994. A level set approach for computing solutions to incompressible two-phase flow. J. Comp. Phys. 114, 146--159. Google ScholarGoogle Scholar
  31. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., and Ueki, H. 2003. Realistic animation of fluid with splash and foam. In Eurographics 2003 Proceedings. Blackwell Publishers, 391--400.Google ScholarGoogle Scholar
  32. Terzopoulos, D., Platt, J., and Fleischer, K. 1989. Heating and melting deformable models (from goop to glop). In Proceedings of Graphics Interface '89. 219--226.Google ScholarGoogle Scholar
  33. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2003) 22, 3, 716--723. Google ScholarGoogle Scholar
  34. Trottenberg, U., Oosterlee, C., and Schüller, A. 2001. Multigrid. Academic Press. Google ScholarGoogle Scholar
  35. Tsai, Y.-H. R., Cheng, L.-T., Osher, S., and Zhao, H.-K. 2003. Fast sweeping algorithms for a class of hamilton--jacobi equations. SIAM J. Numer. Anal. 41, 673--694.Google ScholarGoogle Scholar
  36. Xiao, F., Yabe, T., and Ito, T. 1996. Constructing oscillation preventing scheme for advection equation by rational function. Comp. Phys. Comm. 93, 1--12.Google ScholarGoogle Scholar
  37. Yabe, T. and Aoki, T. 1991. A universal solver for hyperbolic equations by cubic-polynomial interpolation i. one-dimensional solver. Comp. Phys. Comm. 66, 219--232.Google ScholarGoogle Scholar
  38. Yabe, T., Xiao, F., and Utsumi, T. 2001. The constrained interpolation profile method for multiphase analysis. J. Comp. Phys. 169, 556--593. Google ScholarGoogle Scholar

Index Terms

  1. Stable but nondissipative water

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader