skip to main content
10.1145/1048935.1050155acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
Article

A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator

Published:15 November 2003Publication History

ABSTRACT

We use 1944 processors of the Earth Simulator to model seismic wave propagation resulting from large earthquakes. Simulations are conducted based upon the spectral-element method, a high-degree finite-element technique with an exactly diagonal mass matrix. We use a very large mesh with 5.5 billion grid points (14.6 billion degrees of freedom). We include the full complexity of the Earth, i.e., a three-dimensional wave-speed and density structure, a 3-D crustal model, ellipticity as well as topography and bathymetry. A total of 2.5 terabytes of memory is needed. Our implementation is purely based upon MPI, with loop vectorization on each processor. We obtain an excellent vectorization ratio of 99.3%, and we reach a performance of 5 teraflops (30% of the peak performance) on 38% of the machine. The very high resolution of the mesh allows us to perform fully three-dimensional calculations at seismic periods as low as 5 seconds.

References

  1. {1} C. Bassin, G. Laske, and G. Masters. The current limits of resolution for surface wave tomography in North America. EOS, 81:F897, 2000.Google ScholarGoogle Scholar
  2. {2} E. Chaljub. Modélisation numérique de la propagation d'ondes sismiques en géométrie sphérique: application à la sismologie globale (Numerical modeling of the propagation of seismic waves in spherical geometry: applications to global seismology). PhD thesis, Université Paris VII Denis Diderot, Paris, France, 2000.Google ScholarGoogle Scholar
  3. {3} F. A. Dahlen and J. Tromp. Theoretical Global Seismology. Princeton University Press, Princeton, 1998.Google ScholarGoogle Scholar
  4. {4} A. M. Dziewonski and D. L. Anderson. Preliminary reference Earth model. Phys. Earth Planet. Inter., 25:297-356, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  5. {5} D. Eberhart-Phillips, P. J. Haeussler, J. T. Freymueller, A. D. Frankel, C. M. Rubin, P. Craw, N. A. Ratchkovski, G. Anderson, G. A. Carver, A. J. Crone, T. E. Dawson, H. Fletcher, R. Hansen, E. L. Harp, R. A. Harris, D. P. Hill, S. Hreinsdottir, R. W. Jibson, L. M. Jones, R. Kayen, D. K. Keefer, C. F. Larsen, S. C. Moran, S. F. Personius, G. Plafker, B. Sherrod, K. Sieh, N. Sitar, and W. K. Wallace. The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event. Science, 300:1113-1118, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  6. {6} E. Faccioli, F. Maggio, R. Paolucci, and A. Quarteroni. 2D and 3D elastic wave propagation by a pseudospectral domain decomposition method. J. Seismol., 1:237-251, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  7. {7} C. Ji, D. V. Helmberger, and D. J. Wald. Preliminary slip history of the 2002 Denali earthquake. EOS Trans. AGU., 83, 2002.Google ScholarGoogle Scholar
  8. {8} D. Komatitsch. Méthodes spectrales et éléments spectraux pour l'équation de l'élastodynamique 2D et 3D en milieu hétérogène (Spectral and spectral-element methods for the 2D and 3D elastodynamics equations in heterogeneous media). PhD thesis, Institut de Physique du Globe, Paris, France, 1997.Google ScholarGoogle Scholar
  9. {9} D. Komatitsch and J. Tromp. Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys. J. Int., 139:806-822, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  10. {10} D. Komatitsch and J. Tromp. Spectral-element simulations of global seismic wave propagation-I. Validation. Geophys. J. Int., 149:390-412, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  11. {11} D. Komatitsch and J. Tromp. Spectral-element simulations of global seismic wave propagation-II. 3-D models, oceans, rotation, and self-gravitation. Geophys. J. Int., 150:303-318, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  12. {12} D. Komatitsch and J. P. Vilotte. The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am., 88(2):368-392, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  13. {13} R. A. Page, G. Plafker, and H. Pulpan. Block rotation in east-central Alaska: a framework for evaluating earthquake potential? Geology, 23:629-632, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  14. {14} J. Ritsema, H. J. Van Heijst, and J. H. Woodhouse. Complex shear velocity structure imaged beneath Africa and Iceland. Science, 286:1925-1928, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  15. {15} C. Ronchi, R. Ianoco, and P. S. Paolucci. The "Cubed Sphere": a new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys., 124:93-114, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. {16} R. Sadourny. Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Monthly Weather Review, 100:136-144, 1972.Google ScholarGoogle ScholarCross RefCross Ref
  17. {17} G. Seriani. 3-D large-scale wave propagation modeling by a spectral element method on a Cray T3E multiprocessor. Comput. Methods Appl. Mech. Engrg., 164:235-247, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  18. {18} S. Shingu, H. Takahara, H. Fuchigami, M. Yamada, Y. Tsuda, W. Ohfuchi, Y. Sasaki, K. Kobayashi, T. Hagiwara, S.-I. Habata, M. Yokokawa, H. Itoh, and K. Otsuka. A 26.58 teraflops global atmospheric simulation with the spectral transform method on the Earth Simulator. Proceedings of the ACM/IEEE Supercomputing SC'2002 conference, 2002. Published on CD-ROM and at www.sc-conference.org/sc2002. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SC '03: Proceedings of the 2003 ACM/IEEE conference on Supercomputing
    November 2003
    859 pages
    ISBN:1581136951
    DOI:10.1145/1048935

    Copyright © 2003 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 15 November 2003

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • Article

    Acceptance Rates

    SC '03 Paper Acceptance Rate60of207submissions,29%Overall Acceptance Rate1,516of6,373submissions,24%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader