skip to main content
article

Learning physics-based motion style with nonlinear inverse optimization

Published:01 July 2005Publication History
Skip Abstract Section

Abstract

This paper presents a novel physics-based representation of realistic character motion. The dynamical model incorporates several factors of locomotion derived from the biomechanical literature, including relative preferences for using some muscles more than others. elastic mechanisms at joints due to the mechanical properties of tendons, ligaments, and muscles, and variable stiffness at joints depending on the task. When used in a spacetime optimization framework, the parameters of this model define a wide range of styles of natural human movement.Due to the complexity of biological motion, these style parameters are too difficult to design by hand. To address this, we introduce Nonlinear Inverse Optimization, a novel algorithm for estimating optimization parameters from motion capture data. Our method can extract the physical parameters from a single short motion sequence. Once captured, this representation of style is extremely flexible: motions can be generated in the same style but performing different tasks, and styles may be edited to change the physical properties of the body.

References

  1. Alexander, R. M. 1988. Elastic Mechanisms in Animal Movement. Cambridge University Press.Google ScholarGoogle Scholar
  2. Alexander, R. M. 2001. Design By Numbers. Nature 412 (Aug.), 591.Google ScholarGoogle ScholarCross RefCross Ref
  3. Arikan, O., and Forsyth, D. A. 2002. Synthesizing Constrained Motions from Examples. ACM Transactions on Graphics 21, 3 (July), 483--490. (Proceedings of ACM SIGGRAPH 2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Arikan, O., Forsyth, D. A., and O'Brien, J. F. 2003. Motion synthesis from annotations. ACM Transactions on Graphics 22, 3 (July), 402--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bhat, K. S., Seitz, S. M., Popović, J., and Khosla, P. K. 2002. Computing the physical parameters of rigid-body motion from video. Lecture Notes in Computer Science 2350, 551--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bhat, K. S., Twigg, C. D., Hodgins, J. K., Khosla, P. K., Popović, Z., and Seitz, S. M. 2003. Estimating cloth simulation parameters from video. In Eurographics/SIGGRAPH Symposium on Computer Animation, ACM Press, 37--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Brand, M., and Hertzmann, A. 2000. Style machines. Proceedings of SIGGRAPH 2000 (July), 183--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. De Leva, P. 1996. Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. J. of Biomechanics 29, 9, 1223--1230.Google ScholarGoogle ScholarCross RefCross Ref
  9. Faloutsos, P., Van De Panne, M., and Terzopoulos, D. 2001. Composable Controllers for Physics-Based Character Animation. In Proceedings of SIGGRAPH 2001, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Transactions on Graphics 22, 3 (July), 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Farley, C. T., and Morgenroth, D. C. 1999. Leg Stiffness Primarily Depends on Ankle Stiffness During Human Hopping. Journal of Biomechanics 32, 267--273.Google ScholarGoogle ScholarCross RefCross Ref
  12. Ferris, D. P., Liang, K., and Farley, C. T. 1999. Runners Adjust Leg Stiffness for Their First Step on a New Running Surface. Journal of Biomechanics 32, 787--794.Google ScholarGoogle ScholarCross RefCross Ref
  13. Full, R. J., Kubow, T., Schmitt, J., Holmes, P., and Koditschek, D. 2002. Quantifying dynamic stability and maneuverability in legged locomotion. Integ. and Comp. Biol 42, 129--157.Google ScholarGoogle ScholarCross RefCross Ref
  14. Geyer, C. J., and Thompson, E. A. 1992. Constrained Monte Carlo maximum likelihood for dependent data. J. Roy. Statist. Soc. Ser. B 54, 657--699.Google ScholarGoogle Scholar
  15. Gill, P., Saunders, M., and Murray, W. 1996. SNOPT: An SQP algorithm for large-scale constrained optimization. Tech. Rep. NA 96-2, University of California, San Diego.Google ScholarGoogle Scholar
  16. Gleicher, M. 1998. Retargeting Motion to New Characters. Proceedings of SIGGRAPH 98 (July), 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Grassia, F. S. 1998. Practical parameterization of rotations using the exponential map. Journal of Graphics Tools 3, 3, 29--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Grochow, K., Martin, S. L., Hertzmann, A., and Popović, Z. 2004. Style-based Inverse Kinematics. ACM Transactions on Graphics (Aug.), 522--531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Grzeszczuk, R., Terzopoulos, D., and Hinton, G. 1998. NeuroAnimator: Fast Neural Network Emulation and Control of Physics-Based Models. Proceedings of SIGGRAPH 98 (July), 9--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. He, J., Kram, R., and McMahon, T. A. 1991. Mechanics of running under simulated low gravity. J. of Applied Physiology 71, 863--870.Google ScholarGoogle ScholarCross RefCross Ref
  21. Heuberger, C. 2004. Inverse Combinatorial Optimization: A Survey on Problems. Methods, and Results. J. Comb. Optim. 8, 329--361.Google ScholarGoogle ScholarCross RefCross Ref
  22. Hinton, G. E., and Sejnowski, T. J. 1986. Learning and relearning in Boltzmann machines. In Parallel Distributed Processing, Volume 1: Foundations, D. E. Rumelhart and J. L. McClelland, Eds. 282--317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hinton, G. E. 2002. Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation 14, 8. 1771--1800. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hodgins, J. K., and Pollard, N. S. 1997: Adapting Simulated Behaviors For New Characters. Proc. SIGGRAPH 97, 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hodgins, J. K., Wooten. W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating Human Athletics. Proc. SIGGRAPH 95 (August). 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kovar, L., and Gleicher. M. 2004. Automated Extraction and Parameterization of Motions in Large Data Sets. ACM Transactions on Graphics (Aug.), 559--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kovar, L., Gleicher. M., and Pighin, F. 2002. Motion Graphs. ACM Transactions on Graphics 21, 3 (July), 473--482. (Proceedings of ACM SIGGRAPH 2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Laszlo, J., Van De Panne, M., and Fiume, E. L. 2000. Interactive Control For Physically-Based Animation. Proceedings of SIGGRAPH 2000 (July). 201--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lecun, Y., and Huang, F. 2005. Loss Functions for Discriminative Training of Energy-Based Models. In Proc. AIStats.Google ScholarGoogle Scholar
  30. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive Control of Avatars Animated With Human Motion Data. ACM Transactions on Graphics 21, 3 (July), 491--500. (Proceedings of ACM SIGGRAPH 2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Li, Y., Wang, T., and Shum, H.-Y. 2002. Motion Texture: A Two-Level Statistical Model for Character Motion Synthesis. ACM Transactions on Graphics 21, 3 (July), 465--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Liu, C. K., and Popović, Z. 2002. Synthesis of Complex Dynamic Character Motion from Simple Animations. ACM Transactions on Graphics 21, 3 (July), 408--416. Proceedings of ACM SIGGRAPH 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Liu, Z., Gortler, S. J., and Cohen, M. F. 1994, Hierarchical spacetime control. In Computer Graphics (SIGGRAPH 94 Proceedings), 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Mount, F. E., Whitmore, M., and Stealey, S. L. 2003. Evaluation of Neutral Body Posture on Shuttle Mission STS-57 (SPACEHAB-1). Tech. Rep. TM-2003-104805, NASA, Feb.Google ScholarGoogle Scholar
  35. Neff, M., and Fiume, E. 2002. Modeling Tension and Relaxation for Computer Animation. In ACM SIGGRAPH Symposium on Computer Animation, 81--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Pandy, M. G. 2001. Computer Modeling and Simulation of Human Movement. Annu. Rev. Biomed. Eng. 3, 245--273.Google ScholarGoogle ScholarCross RefCross Ref
  37. Pearsall, D., Reid, J., and Ross, R. 1994. Inertial properties of the human trunk of males determined from magnetic resonance imaging. Annals of Biomed. Eng. 22, 692--706.Google ScholarGoogle ScholarCross RefCross Ref
  38. Pollard, N. S., and Reitsma, P. S. A. 2001. Animation of humanlike characters: Dynamic motion filtering with a physically plausible contact model. In Yale Workshop on Adaptive and Learning Systems.Google ScholarGoogle Scholar
  39. Popović, Z., and Witkin, A. 1999. Physically Based Motion Transformation. Proceedings of SIGGRAPH 99 (Aug.), 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Pullen, K., and Bregler, C. 2002. Motion Capture Assisted Animation: Texturing and Synthesis. ACM Transactions on Graphics 21, 3 (July), 501--508. Proceedings of ACM SIGGRAPH 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. In Computer Graphics (SIGGRAPH 91 Proceedings), vol. 25, 349--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Rose, C., Guenter, B., Bodenheimer, B., and Cohen, M. 1996. Efficient generation of motion transitions using spacetime constraints. In Computer Graphics (SIGGRAPH 96 Proceedings), 147--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and Adverbs: Multidimensional Motion Interpolation. IEEE Computer Graphics & Applications 18, 5, 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing Physically Realistic Human Motion in Low-Dimensional Behavior-Specific Spaces. ACM Transactions on Graphics (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Sun, H. C., and Metaxas, D. N. 2001. Automating gait animation. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 261--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Tak, S., and Ko, H.-S. 2005. A physically-based motion retargeting filter. ACM Trans. Graphics 24, 1 (Jan.), 98--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Torkos, N., and Van De Panne, M. 1998. Footprint-based Quadruped Motion Synthesis. In Graphics Interface '98, 151--160.Google ScholarGoogle Scholar
  48. Unuma, M., Anjyo, K., and Takeuchi, R. 1995. Fourier Principles for Emotion-based Human Figure Animation. In Proc. SIGGRAPH 95, 91--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Van De Panne, M., and Fiume, E. 1993. Sensor-actuator networks. In Computer Graphics (SIGGRAPH 93 Proceedings), vol. 27, 335--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Van De Panne, M., Kim, R., and Fiume, E. 1994. Virtual Wind-up Toys for Animation. Graphics Interface '94 (May), 208--215. Held in Banff, Alberta, Canada.Google ScholarGoogle Scholar
  51. Vasilescu, M. A. O. 2002. Human Motion Signatures: Analysis, Synthesis, Recognition. Proc. ICPR '02 3 (Aug.), 456--460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Witkin, A., and Kass, M. 1988. Spacetime constraints. In Computer Graphics (SIGGRAPH 88 Proceedings), vol. 22, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Witkin, A., and Popović, Z. 1995. Motion Warping. Proceedings of SIGGRAPH 95 (Aug.), 105--108. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Learning physics-based motion style with nonlinear inverse optimization

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 24, Issue 3
      July 2005
      826 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1073204
      Issue’s Table of Contents

      Copyright © 2005 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2005
      Published in tog Volume 24, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader