skip to main content
article

The NP-completeness column

Published:01 July 2005Publication History
Skip Abstract Section

Abstract

This is the 24th edition of a column that covers new developments in the theory of NP-completeness. The presentation is modeled on that which M. R. Garey and I used in our book “Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman & Co., New York, 1979, hereinafter referred to as “[G&J].”” Previous columns, the first 23 of which appeared in J. Algorithms, will be referred to by a combination of their sequence number and year of appearance, e.g. “[Col 1, 1981].” This edition of the column describes the history and purpose of the column and the status of the open problems from [G&J] and previous columns.

References

  1. Aaronson, S. 2003. The prime facts: From Euclid to AKS. Manuscript available from http://www. scottaaronson.com/writings/prime.pdf.Google ScholarGoogle Scholar
  2. Adleman, L. M., and Huang, M.-D. 1992. Primality testing and Abelian varieties over finite fields. Lecture Notes in Mathematics, vol. 1512. Springer-Verlag, New York.Google ScholarGoogle Scholar
  3. Adleman, L. M., Pomerance, C., and Rumely, R. S. 1983. On distinguishing prime numbers from composite numbers. Ann. Math. 117, 173--206.Google ScholarGoogle ScholarCross RefCross Ref
  4. Agrawal, M., Kayal, N., and Saxena, N. 2002. PRIMES is in P. Manuscript available from http:// www.cse.iitk.ac.in/primality.pdf.Google ScholarGoogle Scholar
  5. Agrawal, M., Kayal, N., and Saxena, N. 2004. PRIMES is in P. Ann. Math. 160, 781--793.Google ScholarGoogle ScholarCross RefCross Ref
  6. Aharonov, D., and Regev, O. 2004. Lattice problems in NP ∩ coNP. In Proceedings of the 45th IEEE Symposium on Foundations of Computing. IEEE Computer Society, Los Alamitos, Calif., 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ajtai, M. 1996. Generating hard instances of lattice problems. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing. ACM, New York, 99--108. (Full version available from http://eccc.uni-trier.de/eccc as ECCC technical report TR96-007.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ajtai, M. 1998. The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract). In Proceedings of the 30th Annual ACM Symposium on Theory of Computing. ACM, New York, 10--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ajtai, M. 2003. The worst-case behavior of Schnorr's algorithm approximating the shortest nonzero vector in a lattice. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing. ACM, New York, 396--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ajtai, M., and Dwork, C. 1997. A public-key cryptosystem with worst-case/average-case equivalence. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing. ACM, New York, 284--293. (Full version available from http://eccc.uni-trier.de/eccc as ECCC technical report TR96-065.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ajtai, M., Kumar, R., and Sivakumar, D. 2001. A seive algorithm for the shortest lattice vector problem. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing. ACM, New York, 601--610. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Arora, S., Babai, L., Stern, J., and Sweedyk, E. Z. 1997. The hardness of approximating optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 54, 317--331. (Preliminary version in Proceedings of the 34th IEEE Symposium on Foundations of Computer Science (1993), 724-- 733.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Babai, L. 1986. On Lovász' lattice reduction and the nearest lattice point problem. Combinatorica 6, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Babai, L., and Luks, E. 1983. Canonical labelling of graphs. In Proceedings of the 15th Annual ACM Symposium on Theory of Computing. ACM, New York, 171--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Banaszczyk, W. 1993. New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296, 625--635.Google ScholarGoogle ScholarCross RefCross Ref
  16. Berlekamp, E. R., McEliece, R. J., and van Tilborg, H. C. A. 1978. On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory IT-24, 384--386.Google ScholarGoogle ScholarCross RefCross Ref
  17. Berman, P., and Karpinski, M. 2002. Approximating minimum satisfiability of linear equations. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA., 74--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Bern, M., Edelsbrunner, H., Eppstein, D., Mitchell, S., and Tan, T. S. 1993. Edge insertion for optimal triangulations. Disc. Comput. Geom. 10, 47--65.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Bern, M., and Eppstein, D. 1997. Approximation algorithms for geometric problems. In Approximation Algorithms for NP-Hard Problems, D. S. Hochbaum, Ed. PWS Publishing Company, Boston, Mass., 296--345. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Bernstein, D. J. 2004. Proving primality in essentially quartic random time. (Manuscript, available from http://cr.yp.to/primetests/quartic-20041203.pdf.)Google ScholarGoogle Scholar
  21. Berrizbeitia, P. 2002. Sharpening PRIMES is in P for a large family of numbers. (Manuscript, available from arxiv.org/abs/math.NT/0211334.)Google ScholarGoogle Scholar
  22. Bienstock, D. 1991. On the complexity of testing for odd holes and induced odd paths. Disc. Math. 90, 85--92. (Corrigendum in Disc. Math. 102 (1992), 109.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Boppana, R., Hastad, J., and Zachos, S. 1987. Does co-NP have short interactive proofs? Inf. Process. Lett. 25, 27--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Brickell, E. F. 1985. Breaking iterated knapsacks. In Advances in Cryptology: Proceedings of CRYPTO 84. Lecture Notes in Computer Science, vol. 196. Springer-Verlag, Berlin, Germany, 342--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Bruck, J., and Naor, M. 1990. The hardness of decoding linear codes with preprocessing. IEEE Trans. Inf. Theory 36, 381--385.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Cai, J.-Y. 1998. A relation of primal-dual lattices and the complexity of shortest lattice vector problem. Theor. Comput. Sci. 207, 105--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Cai, J.-Y. 1999. Some recent progress on the complexity of lattice problems. In Proceedings of the 14th IEEE Conference on Computational Complexity. IEEE Computer Society, Los Alamitos, Calif., 158--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Cai, J.-Y., and Nerurkar, A. 1997. An improved worst-case to average-case connection for lattice problems. In Proceedings of the 38th Annual IEEE Symposium on Foundations of Computing. IEEE Computer Society, Los Alamitos, Calif., 468--477. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Cai, J.-Y., and Nerurkar, A. 2000. A note on the non-NP-hardness of approximate lattice problems under general Cook reductions. Inf. Process. Lett. 76, 61--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P., and Vušković, K. 2005a. Recognizing Berge graphs. Combinatorica 25, 143--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Chudnovsky, M., Kawarabayashi, K., and Seymour, P. 2005b. Detecting even holes. J. Graph Theory 48, 85--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Chudnovsky, M., Robertson, N., Seymour, P., and Thomas, R. 2005c. The strong perfect graph theorem. Annual of Math., to appear.Google ScholarGoogle Scholar
  33. Conforti, M., Cornuéjols, G., Kapoor, A., and Vušković, K. 2002. Even hole-free graphs, Part II: Recognition algorithm. J. Graph Theory 40, 238--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Coppersmith, D. 1993. Modifications to the number field sieve. J. Graph Theory 6, 169--180.Google ScholarGoogle Scholar
  35. Crandall, R., and Pomerance, C. B. 2001. Prime Numbers: A Computational Perspective. Springer, New York.Google ScholarGoogle ScholarCross RefCross Ref
  36. D'Azevedo, E. F., and Simpson, R. B. 1989. On optimal interpolation triangle incidences. SIAM J. Sci. Statist. Comput. 10, 1063--1075. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Dinur, I., Kindler, G., Raz, R., and Safra, S. 2003. Approximating CVP to within almost polynomial factors is NP-hard. Combinatorica 23, 205--243. (Preliminary version in Proceedings of the 39th IEEE Symposium on Foundations of Computing (1998), 475--484.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Downey, R. G., and Fellows, M. R. 1999. Parameterized Complexity. Springer-Verlag, Heidelberg, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Dumer, I., Micciancio, D., and Sudan, M. 2003. Hardness of approximating the minimum distance of a linear code. IEEE Trans. Inf. Theory 49, 22--37. (Preliminary version in Proceedings of the 40th IEEE Symposium on Foundations of Computing (1999), 475--484.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Edelsbrunner, H., and Tan, T. S. 1993. A quadratic time algorithm for the minmax length triangulation. SIAM J. Comput. 22, 527--551. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Edelsbrunner, H., Tan, T. S., and Waupotitsch, R. 1992. An o(n2log n) time algorithm for the minmax angle triangulation. SIAM J. Sci. Statist. Comput. 13, 994--1008. (Preliminary version in Proceedings of the 6th ACM Symposium on Computational Geometry. ACM, New York, 1990, 44--52.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Eppstein, D. 1994. Approximating the minimum weight Steiner triangulation. Disc & Comp. Geom. 11, 163--191. (Preliminary version in Proceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA., 1992, 48--57.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Feige, U., and Micciancio, D. 2004. The inapproximability of lattice and coding problems with preprocessing. J. Comput. Syst. Sci. 69, 1, 45--67. (Preliminary version in Proceedings of the 2002 IEEE Computational Complexity Conference. IEEE Computer Society Press, Los Alamitos, Calif., 44--52.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Fouvry, E. 1980. Théorème de Brun-Titchmarsh; application au théorème de Fermat. J. Numb. Theory 12, 128--138.Google ScholarGoogle Scholar
  45. Goldreich, O., and Goldwasser, S. 2000. On the limits of nonapproximability of lattice problems. J. Comput. Syst. Sci. 60, 540--563. (Preliminary version in Proceedings of the 30th Annual ACM Symposium on Theory of Computing. ACM, New York, 1998, 1--9.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Goldreich, O., Micali, S., and Widgerson, A. 1991. Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38, 691--729. (Preliminary version in Proceedings of the 27th Annual IEEE Symposium on Foundations of Computing. IEEE Computer Society Press, Los Alamitos, Calif., 1986, 174--187.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Goldreich, O., Micciancio, D., Safra, S., and Seifert, J. P. 1999. Approximating shortest lattice vectors is not harder than approximating closest lattice vectors. Inf. Process. Lett. 71, 55--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Goldwasser, S., and Kilian, J. 1986. Almost all primes can be quickly certified. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing. ACM, New York, 316--329. (Journal version is Goldwasser and Kilian {1991}.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Goldwasser, S., and Kilian, J. 1999. Primality testing using elliptic curves. J. ACM 46, 4, 450--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Golumbic, M. C. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Granville, A. 2004. It is easy to determine whether a given integer is prime. Bull. AMS 42, 3--38.Google ScholarGoogle ScholarCross RefCross Ref
  52. Grötschel, M., Lovász, L., and Schrijver, A. 1981a. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169--197.Google ScholarGoogle ScholarCross RefCross Ref
  53. Grötschel, M., Lovász, L., and Schrijver, A. 1981b. Polynomial algorithms for perfect graphs. Ann. Disc. Math. 21, 322--356.Google ScholarGoogle Scholar
  54. Guruswami, V., Micciancio, D., and Regev, O. 2005. The complexity of the covering radius problem. Comput. Complex. 14, 90--120. (Preliminary version in Proceedings of the 19th IEEE Conference on Computational Complexity. IEEE Computer Society Press, Los Alamitos, Calif., 2004, 161--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Guruswami, V., and Vardy, A. 2005. Maximum-likelihood decoding of Reed-Solomon codes is NP-hard. IEEE Trans. Inf. Theory 51, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Hsu, W.-L. 1987. Recognizing planar perfect graphs. J. ACM 34, 255--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. JáJá, J., and Venkatesan, S. 1981. On the complexity of a parity problem related to coding theory. Report CS-81-5, Department of Computer Science, Pennsylvania State University.Google ScholarGoogle Scholar
  58. Kaibel, V., and Schwartz, A. 2003. On the complexity of polytope isomorphism problems. Graphs Combin. 19, 215--230.Google ScholarGoogle Scholar
  59. Kannan, R., Lenstra, A. K., and Lovász, L. 1988. Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers. Math. Comput. 50, 235--250.Google ScholarGoogle ScholarCross RefCross Ref
  60. Khot, S. 2004. Hardness of approximating the shortest vector problem in lattices. In Proceedings of the 45th IEEE Symposium on Foundations of Computing. IEEE Computer Society, Los Alamitos, Calif., 126--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Kumar, R., and Sivakumar, D. 2001. Complexity theory column 33 (Guest Column): Complexity of SVP---A reader's digest. SIGACT News 32, 3, 40--52.Google ScholarGoogle Scholar
  62. Lagarias, J. C. 1985. The computational complexity of simultaneous Diophantine approximation problems. SIAM J. Comput. 14, 196--209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Lagarias, J. C., Lenstra, Jr., H. W., and Schnorr, C.-P. 1990. Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10, 333--348.Google ScholarGoogle Scholar
  64. Lenstra, A. K., Lenstra, H. W., and Lovász, L. 1982. Factoring polynomials with rational coefficients. Math. Ann. 261, 515--534.Google ScholarGoogle ScholarCross RefCross Ref
  65. Lenstra, H. W., and Pomerance, C. 2005. Primality testing with Gaussian periods. To appear.Google ScholarGoogle Scholar
  66. Lenstra, Jr., H. W. 1983. Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538--548.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Levcopoulos, C., and Krznaric, D. 1998. Quasi-greedy triangulations approximating the minimum weight triangulation. J. Algorithms 27, 303--338. (Preliminary version in Proceedings of the 7th ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA., 1996, 392--401.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Mathon, R. 1979. A note on the graph isomorphism counting problem. Inf. Process. Lett. 8, 131--132.Google ScholarGoogle ScholarCross RefCross Ref
  69. Micciancio, D. 2001. The shortest vector in a lattice is hard to approximate to within some constant. SIAM J. Comput. 30, 2008--2035. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Micciancio, D. 2004. Almost perfect lattices, the covering radius problem, and applications to Ajtai's connection factor. SIAM J. Comput. 34, 118--169. (Preliminary version in Proceedings of the 34th Annual ACM Symposium on Theory of Computing. ACM, New York, 2002, 609--618.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Micciancio, D., and Regev, O. 2004. Worst-case to average-case reductions based on Gaussian measures. In Proceedings of the 45th IEEE Symposium on Foundations of Computing. IEEE Computer Society Press, Los Alamitos, Calif., 372--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Micciancio, D., and Vadhan, S. 2003. Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In Advances in Cryptology---CRYPTO 2003, Proceedings of the 23rd Annual International Cryptology Conference. Lecture Notes in Computer Science, vol. 2729. Springer-Verlag, Berlin, Germany, 282--298.Google ScholarGoogle Scholar
  73. Mihailescu, P., and Avanzi, R. M. 2003. Efficient “quasi”-deterministic primality test improving AKS draft. Manuscript, available from the first author at [email protected].Google ScholarGoogle Scholar
  74. Miller, G. L. 1976. Riemann's hypothesis and test for primality. J. Comput. Syst. Sci. 13, 300--317.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Pomerance, C. 1996. A tale of two sieves. AMS Notices 43, 1473--1485.Google ScholarGoogle Scholar
  76. Pratt, V. 1975. Every prime has a succinct certificate. SIAM J. Comput. 4, 214--220.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Rabin, M. 1976. Probabilistic algorithms. In Algorithms and Complexity: New Directions and Recent Results, J. F. Traub, Ed. Academic Press, New York, 21--39.Google ScholarGoogle Scholar
  78. Rabin, M. 1980. Probabilistic algorithm for testing primality. J. Number Theory 12, 128--138.Google ScholarGoogle ScholarCross RefCross Ref
  79. Regev, O. 2004a. Improved inappoximability of lattice and coding problems with preprocessing. IEEE Trans. Inf. Theory 50, 2031--2037. (Preliminary version in Proceedings of the 18th IEEE Conference on Computational Complexity. IEEE Computer Society Press, Los Alamitos, Calif., 2002, 315--322.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Regev, O. 2004b. New lattice-based cryptographic constructions. J. ACM 51, 899--942. (Preliminary version in Proceedings of the 35th Annual ACM Symposium on Theory of Computing. ACM, New York, 2003, 407--416.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Rivest, R., Shamir, A., and Adleman, L. 1978. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Schnorr, C.-P. 1987. A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Schönhage, A. 1984. Factorization of univariate integer polynomials by Diophantine approximation and an improved basis reduction algorithm. In Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 172. Springer-Verlag, Berlin, Germany, 436--447. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Shawe-Taylor, J., and Pisanski, T. 1994. Homeomorphism of 2-complexes is graph isomorphism complete. SIAM J. Comput. 23, 120--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Shor, P. W. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484--1509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Sibson, R. 1978. Locally equiangular triangulations. Comput. J. 21, 243--245.Google ScholarGoogle Scholar
  87. Solovay, R. M., and Strassen, V. 1978. A fast Monte-Carlo test for primality. SIAM J. Comput. 6, 84--85.Google ScholarGoogle ScholarCross RefCross Ref
  88. Toran, J. 2004. On the hardness of graph isomorphism. SIAM J. Comput. 33, 1093--1108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. van Emde Boas, P. 1981. Another NP-complete partition problem and the complexity of computing short vectors in a lattice. Report 81-04, Department of Mathematics, Univ. Amsterdam, Amsterdam, The Netherlands.Google ScholarGoogle Scholar
  90. Vardy, A. 1997. The intractability of computing the minimum distance of a code. IEEE Trans. Inf. Theory 43, 1757--1766. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The NP-completeness column

        Recommendations

        Reviews

        Lane A. Hemaspaandra

        It has been quite a wait between this last (24th) installment of David Johnson's NP-completeness column and the 23rd [1], which came out in 1992. This one is the first to appear in the new journal ACM Transactions on Algorithms . Fortunately, the clarity, command, informativeness, and sense of excitement in Johnson's writing remains truly superb, a model for anyone wishing to write about progress in theoretical computer science. This particular column covers what progress has been made on the open problems from the famous book by Garey and Johnson [2], and from the first 23 columns. The bulk of the column focuses on the four problems that have been resolved, but whose resolutions were not already covered in the first 23 columns: composite number, even cover/minimum weight codeword, imperfect graph, and shortest vector in a lattice. The discussions are a joy to read. The column concludes with a brief discussion of "still open after all these years" problems. The roughly 90 citations give readers a rich set of resources to further explore the literature related to progress on the covered problems. Online Computing Reviews Service

        Access critical reviews of Computing literature here

        Become a reviewer for Computing Reviews.

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Algorithms
          ACM Transactions on Algorithms  Volume 1, Issue 1
          July 2005
          176 pages
          ISSN:1549-6325
          EISSN:1549-6333
          DOI:10.1145/1077464
          Issue’s Table of Contents

          Copyright © 2005 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2005
          Published in talg Volume 1, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader