skip to main content
article

A Bayesian method for probable surface reconstruction and decimation

Published:01 January 2006Publication History
Skip Abstract Section

Abstract

We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface reconstruction, the method simultaneously smooths noisy regions while enhancing features such as corners. When applied to surface decimation, it finds models that closely approximate the original mesh when rendered. The method is applied in the context of computer animation where it finds decimations that minimize the visual error even under nonrigid deformations.

References

  1. Alexa, M. and Müller, W. 2000. Representing animations by principal components. Comput. Graph. Forum 19, 3.Google ScholarGoogle Scholar
  2. Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3, 485--493. Google ScholarGoogle Scholar
  3. Bajaj, C. L. and Xu, G. 2003. Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans. Graph. 22, 1, 4--32. Google ScholarGoogle Scholar
  4. Barhak, J. and Fischer, A. 2001. Adaptive reconstruction of freeform objects with 3d som neural network grids. In Proceedings of the 9th Pacific Conference on Computer Graphics and Applications (PG'01). (Washington, DC). IEEE Computer Society, 97. Google ScholarGoogle Scholar
  5. Besl, P. J. and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2, 239--256. Google ScholarGoogle Scholar
  6. Briceno, H. M., Sander, P. V., McMillan, L., Gortler, S., and Hoppe, H. 2003. Geometry videos: A new representation for 3d animations. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'03). Eurographics Association, Aire-la-Ville, Switzerland. 136--146. Google ScholarGoogle Scholar
  7. Clarenz, U., Diewald, U., and Rumpf, M. 2000. Anisotropic geometric diffusion in surface processing. In Proceedings of the Conference on Visualization (VIS'00). (Los Alamitos, CA), IEEE Computer Society Press, 397--405. Google ScholarGoogle Scholar
  8. Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. ACM Trans. Graph. 23, 3, 905--914. Google ScholarGoogle Scholar
  9. Davis, J., Nehab, D., Ramamoorthi, R., and Rusinkiewicz, S. 2005. Spacetime stereo: A unifying framework for depth from triangulation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 2 (Feb.), 296--302. Google ScholarGoogle Scholar
  10. Desbrun, M., Meyer, M., Schroder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99). ACM Press/Addison-Wesley Publishing Co., New York, NY. 317--324. Google ScholarGoogle Scholar
  11. Desbrun, M., Meyer, M., Schroder, P., and Barr, A. H. 2000. Anisotropic feature-preserving denoising of height fields and bivariate data. In Graphics Interface. 145--152.Google ScholarGoogle Scholar
  12. Fleishman, S., Drori, I., and Cohen-Or, D. 2003. Bilateral mesh denoising. ACM Trans. Graph. 22, 3, 950--953. Google ScholarGoogle Scholar
  13. Garland, M. and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'97). ACM Press/Addison-Wesley Publishing Co., New York, NY. 209--216. Google ScholarGoogle Scholar
  14. Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'02). ACM Press, New York, NY. 355--361. Google ScholarGoogle Scholar
  15. Jeong, W.-K., Ivrissimtzis, I. P., and Seidel, H.-P. 2003. Neural meshes: Statistical learning based on normals. In Proceedings of the 11th Pacific Conference on Computer Graphics and Applications (PG'03). (Washington, DC). IEEE Computer Society, 404. Google ScholarGoogle Scholar
  16. Jones, T. R., Durand, F., and Desbrun, M. 2003. Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. 22, 3, 943--949. Google ScholarGoogle Scholar
  17. Krizek, M., Neittaanmki, P., Glowinski, R., and Korotov, S. 2004. Conjugate Gradient Algorithms and Finite Element Methods. Springer-Verlag, Berlin, Germany and New York, NY.Google ScholarGoogle Scholar
  18. Levin, A., Zomet, A., and Weiss, Y. 2002. Learning to perceive transparency from the statistics of natural scenes. In NIPS. 1247--1254.Google ScholarGoogle Scholar
  19. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 3, 385--392. Google ScholarGoogle Scholar
  20. Press, W. H. 1988. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge; UK. Google ScholarGoogle Scholar
  21. Saul, L. K. and Roweis, S. T. 2003. Think globally, fit locally: Unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119--155. Google ScholarGoogle Scholar
  22. Stahl, D., Ezquerra, N., and Turk, G. 2002. Bag-of-particles as a deformable model. In Proceedings of the Symposium on Data Visualisation (VISSYM'02). Aire-la-Ville, Switzerland, Eurographics Association. 141--150. Google ScholarGoogle Scholar
  23. Szeliski, R. and Terzopoulos, D. 1989. From splines to fractals. In Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'89). ACM Press, New York, NY. 51--60. Google ScholarGoogle Scholar
  24. Szeliski, R. and Tonnesen, D. 1992. Surface modeling with oriented particle systems. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'92). ACM Press, New York, NY. 185--194. Google ScholarGoogle Scholar
  25. Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S. 2002. Geometric surface smoothing via anisotropic diffusion of normals. In Proceedings of the Conference on Visualization (VIS'02). (Washington, DC). IEEE Computer Society. Google ScholarGoogle Scholar
  26. Taubin, G. 1995. A signal processing approach to fair surface design. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'95). ACM Press, New York, NY. 351--358. Google ScholarGoogle Scholar
  27. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'87). ACM Press, New York, NY. 205--214. Google ScholarGoogle Scholar

Index Terms

  1. A Bayesian method for probable surface reconstruction and decimation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader