skip to main content
10.1145/1150402.1150490acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
Article

Naïve filterbots for robust cold-start recommendations

Published:20 August 2006Publication History

ABSTRACT

The goal of a recommender system is to suggest items of interest to a user based on historical behavior of a community of users. Given detailed enough history, item-based collaborative filtering (CF) often performs as well or better than almost any other recommendation method. However, in cold-start situations - where a user, an item, or the entire system is new - simple non-personalized recommendations often fare better. We improve the scalability and performance of a previous approach to handling cold-start situations that uses filterbots, or surrogate users that rate items based only on user or item attributes. We show that introducing a very small number of simple filterbots helps make CF algorithms more robust. In particular, adding just seven global filterbots improves both user-based and item-based CF in cold-start user, cold-start item, and cold-start system settings. Performance is better when data is scarce, performance is no worse when data is plentiful, and algorithm efficiency is negligibly affected. We systematically compare a non-personalized baseline, user-based CF, item-based CF, and our bot-augmented user- and item-based CF algorithms using three data sets (Yahoo! Movies, MovieLens, and EachMovie) with the normalized MAE metric in three types of cold-start situations. The advantage of our "naïve filterbot" approach is most pronounced for the Yahoo! data, the sparsest of the three data sets.

References

  1. C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu. Horting hatches an egg: a new graph-theoretic approach to collaborative filtering. In ACM KDD, pages 201--212, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Balabanovic and Y. Shoham. Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3):66--72, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. Basilico and T. Hofmann. A joint framework for collaborative and content filtering. In ACM SIGIR, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as classification: Using social and content-based information in recommendation. In AAAI/IAAI, pages 714--720, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Billsus and M. J. Pazzani. Learning collaborative information filters. In ICML, pages 46--54, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In UAI, pages 43--52, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM TOIS, 22(1):143--177, Jan 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4(2):133--151, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. M. Sarwar, J. L. Herlocker, and J. Riedl. Combining collaborative filtering with personal agents for better recommendations. In AAAI/IAAI, pages 439--446, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In ACM SIGIR, pages 230--237, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In IJCAI, pages 688--693, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM TOIS, 22(1):116--142, Jan 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. G. Karypis. Evaluation of item-based top-n recommendation algorithms. In CIKM, pages 247--254, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. A. Konstan, B. N. Miller, D. Maltz, J. L. H. L. R. Gordon, and J. Riedl. GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40(3):77--87, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. Marlin. Collaborative filtering: A machine learning perspective. Master's thesis, University of Toronto, Computer Science Department.Google ScholarGoogle Scholar
  16. M. R. McLaughlin and J. l. Herlocker. A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In ACM SIGIR, pages 329--336, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. McNee, S. Lam, J. Konstan, and J. Riedl. Interfaces for eliciting new user preferences in recommender systems. In UM, pages 178--188, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative filtering. In AAAI, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. B. N. Miller, J. T. Riedl, and J. A. Konstan. Experience with grouplens: Making usenet useful again. In USENIX annual technical conference, pages 219--231, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. K. Miyahara and M. J. Pazzani. Collaborative filtering with the simple bayesian classifier. In PRICAI, pages 679--689, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S.-T. Park, D. M. Pennock, and D. DeCoste. Applying collaborative filtering techniques to movie search for better ranking and browsing. In AAAI Workshop on Intelligent Techniques for Web Personalization (ITWP 2006), 2006.Google ScholarGoogle Scholar
  22. S.-T. Park, D. M. Pennock, O. Madani, N. Good, and D. DeCoste. Naive filterbots for robust cold-start recommendations. Technical report, YRL-2005-058, Nov 2005.Google ScholarGoogle Scholar
  23. D. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach. In UAI, pages 473--480, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Popescul, L. Ungar, D. Pennock, and S. Lawrence. Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments. In UAI, pages 437--444, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Rashid, I. Albert, D. Cosley, S. Lam, S. Mcnee, J. Konstan, and J. Riedl. Getting to know you: Learning new user preferences in recommender systems. In IUI, pages 127--134, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In ICML, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In ACM CSCW, pages 175--186, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recommender systems - a case study. In ACM WebKDD Workshop, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  29. B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285--295, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. U. Shardanand and P. Maes. Social information filtering: Algorithms for automating "word of mouth". In CHI, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. L. Ungar and D. Foster. Clustering methods for collaborative filtering. In Workshop on Recommendation Systems at AAAI, 1998.Google ScholarGoogle Scholar
  32. M. R. W. Hill, L. Stead and G. Furnas. Recommending and evaluating choices in a virtual community of use. In ACM CHI, pages 194--201, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Naïve filterbots for robust cold-start recommendations

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader