skip to main content
10.1145/1179352.1141924acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Partial and approximate symmetry detection for 3D geometry

Published:01 July 2006Publication History

ABSTRACT

"Symmetry is a complexity-reducing concept [...]; seek it every-where." - Alan J. PerlisMany natural and man-made objects exhibit significant symmetries or contain repeated substructures. This paper presents a new algorithm that processes geometric models and efficiently discovers and extracts a compact representation of their Euclidean symmetries. These symmetries can be partial, approximate, or both. The method is based on matching simple local shape signatures in pairs and using these matches to accumulate evidence for symmetries in an appropriate transformation space. A clustering stage extracts potential significant symmetries of the object, followed by a verification step. Based on a statistical sampling analysis, we provide theoretical guarantees on the success rate of our algorithm. The extracted symmetry graph representation captures important high-level information about the structure of a geometric model which in turn enables a large set of further processing operations, including shape compression, segmentation, consistent editing, symmetrization, indexing for retrieval, etc.

Skip Supplemental Material Section

Supplemental Material

p560-mitra-high.mov

mov

24.2 MB

p560-mitra-low.mov

mov

9.7 MB

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM TOG 22, 3, 485--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alt, H., Mehlhorn, K., Wagener, H., and Welzl, E. 1988. Congruence, similarity and symmetries of geometric objects. Discrete Comput. Geom. 3, 237--256.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amato, N. M., Bayazit, O. B., Dale, L. K., Jones, C., and Vallejo, D. 2000. Choosing good distance metrics and local planners for probabilistic roadmap methods. In IEEE Trans. on Robotics and Automation, 442--447.Google ScholarGoogle Scholar
  4. Amenta, N., and Bern, M. 1998. Surface reconstruction by voronoi filtering. In Symposium on Computational Geometry, 39--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Arias-Castro, E., Donoho, D. L., and Huo, X. 2006. Adaptive multiscale detection of filamentary structures in a background of uniform random points. Annals of Statistics 34, 1.Google ScholarGoogle ScholarCross RefCross Ref
  6. Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. 1998. An optimal algorithm for approximate nearest neighbor searching. In Journal of the ACM, vol. 45, 891--923. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Atallah, M. 1985. On symmetry detection. IEEE Trans. on Computers 34, 7, 663--666.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Boissonnat, J. D., and Oudot, S. 2003. Provably good surface sampling and approximation. In Symposium on Geometry Processing, 9--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cohen-Steiner, D., and Morvan, J.-M. 2003. Restricted delaunay triangulations and normal cycle. In Symposium on Computational Geometry, 312--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Comaniciu, D., and Meer, P. 2002. Mean shift: A robust approach toward feature space analysis. IEEE PAMI 24, 603--609. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cox, T., and Cox, M. 1994. Multidimensional Scaling. Chapman and Hall, London.Google ScholarGoogle Scholar
  12. Fischler, M. A., and Bolles, R. C. 1981. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. In Comm. of the ACM, vol. 24, 381--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gal, R., and Cohen-Or, D. 2006. Salient geometric features for partial shape matching and similarity. vol. 25(1), to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gonnet, G. 1981. Expected length of the longest probe sequence in hash code searching. In Journal of the Association for Computing Machinery, 289--304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hofer, M., Pottmann, H., and Ravani, B. 2004. From curve design algorithms to the design of rigid body motions. In The Visual Computer, 279--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hough, P. 1959. Machine analysis of bubble chamber pictures. In International Conference on High Energy Accelerators and Instrumentation.Google ScholarGoogle Scholar
  17. James, D. L., and Twigg, C. D. 2005. Skinning mesh animations. ACM TOG 24, 3, 399--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kazhdan, M. M., Chazelle, B., Dobkin, D. P., Finkel-Stein, A., and Funkhouser, T. A. 2002. A reflective symmetry descriptor. In Proceedings of ECCV, 642--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Symmetry descriptors and 3d shape matching. In Symposium on Geometry Processing, 116--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Klein, F. 1893. Vergleichende betrachtungen ber neuere geometrische forschungen. Mathematische Annalen 43.Google ScholarGoogle Scholar
  21. Lamdan, Y., and Wolfson, H. J. 1988. Geometric hashing: A general and efficient model-based recognition scheme. In Proceedings of ICCV, 238--249.Google ScholarGoogle Scholar
  22. Liu, Y., Collins, R., and Tsin, Y. 2004. A computational model for periodic pattern perception based on frieze and wall-paper groups. In IEEE PAMI, 354--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Loy, G., and Eklundh, J. 2006. Detecting symmetry and symmetric constellations of features. In Proceedings of ECCV, to appear.Google ScholarGoogle Scholar
  24. Magnus, W., Karrass, A., and Solitar, D. 2004. Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. Dover.Google ScholarGoogle Scholar
  25. Manay, S., Hong, B.-W., Yezzi, A. J., and Soatto, S. 2004. Integral invariant signatures. In Proceedings of ECCV, 87--99.Google ScholarGoogle Scholar
  26. Mitra, N. J., Gelfand, N., Pottmann, H., and Guibas, L. 2004. Registration of point cloud data from a geometric optimization perspective. In Symposium on Geometry Processing, 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Motwani, R., and Raghavan, P. 1995. Randomized Algorithms. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Raab, M., and Steger, A. 1998. "balls into bins" --- A simple and tight analysis. Lecture Notes in Computer Science. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rusinkiewicz, S., and Levoy, M. 2001. Efficient variants of the icp algorithm. In 3DIM, 145--152.Google ScholarGoogle Scholar
  30. Sun, C., and Sherrah, J. 1997. 3d symmetry detection using the extended gaussian image. IEEE PAMI 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Thompson, D. W. 1961. On Growth and Form. Cambridge.Google ScholarGoogle Scholar
  32. Tuzel, O., Subbarao, R., and Meer, P. 2005. Simultaneous multiple 3d motion estimation via mode finding on lie groups. In Proceedings of ICCV, vol. 1, 18--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wolter, J., Woo, T., and Volz, R. 1985. Optimal algorithms for symmetry detection in two and three dimensions. The Visual Computer.Google ScholarGoogle Scholar
  34. Zabrodsky, H., Peleg, S., and Avnir, D. 1995. Symmetry as a continuous feature. IEEE PAMI 17. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Partial and approximate symmetry detection for 3D geometry

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGGRAPH '06: ACM SIGGRAPH 2006 Papers
        July 2006
        742 pages
        ISBN:1595933646
        DOI:10.1145/1179352

        Copyright © 2006 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2006

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        SIGGRAPH '06 Paper Acceptance Rate86of474submissions,18%Overall Acceptance Rate1,822of8,601submissions,21%

        Upcoming Conference

        SIGGRAPH '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader