skip to main content
10.1145/1183614.1183647acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
Article

3DString: a feature string kernel for 3D object classification on voxelized data

Published:06 November 2006Publication History

ABSTRACT

Classification of 3D objects remains an important task in many areas of data management such as engineering, medicine or biology. As a common preprocessing step in current approaches to classification of voxelized 3D objects, voxel representations are transformed into a feature vector description.In this article, we introduce an approach of transforming 3D objects into feature strings which represent the distribution of voxels over the voxel grid. Attractively, this feature string extraction can be performed in linear runtime with respect to the number of voxels. We define a similarity measure on these feature strings that counts common k-mers in two input strings, which is referred to as the spectrum kernel in the field of kernel methods. We prove that on our feature strings, this similarity measure can be computed in time linear to the number of different characters in these strings. This linear runtime behavior makes our kernel attractive even for large datasets that occur in many application domains. Furthermore, we explain that our similarity measure induces a metric which allows to combine it with an M-tree for handling of large volumes of data. Classification experiments on two published benchmark datasets show that our novel approach is competitive with the best state-of-the-art methods for 3D object classification.

References

  1. M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl. 3D Shape Histograms for Similarity Search and Classification in Spatial Databases. In Proceedings of the 6th International Symposium on Spatial Databases, pages 207--226, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik. A support vector method for hierarchical clustering. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 367--373. MIT Press, 2001.Google ScholarGoogle Scholar
  3. H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov, and P. Bourne. The protein data bank. Nucleic Acids Research, 28:235--242, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  4. C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung. On Visual Similarity Based 3D Model Retrieval. In Computer Graphics Forum, volume 22, pages 223--232, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search in metric spaces. In VLDB '97: Proceedings of the 23rd International Conference on Very Large Data Bases, pages 426--435, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik. Support vector regression machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 155--161, Cambridge, MA, 1997. MIT Press.Google ScholarGoogle Scholar
  8. T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and D. Jacobs. A search engine for 3d models. In ACM Transactions on Graphics, pages 83--105, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10, Computer Science Department, UC Santa Cruz, 1999.Google ScholarGoogle Scholar
  10. T. S. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 487--493. MIT Press, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169--184, Cambridge, MA, 1999. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. I. Jolliffe. Principal Component Analysis. Springer, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  13. A. Kaufman. An Algorithm for 3D Scan-Conversion of Polygons. In Proc. Eurographics, pages 197--208, 1987.Google ScholarGoogle Scholar
  14. M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic representation of 3d shape descriptors. In Symposium on Geometry Processing, pages 167--175, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H.-P. Kriegel, P. Kröger, Z. Mashael, M. Pfeifle, M. Pötke, and T. Seidl. Effective Similarity Search on Voxelized CAD Objects. In Proc. 8th Int. Conf. on Database Systems for Advanced Applications, Kyoto, Japan, pages 27--36, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM protein classification. In Proceedings of the Pacific Symposium on Biocomputing, pages 564--575, 2002.Google ScholarGoogle Scholar
  17. C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string kernels for SVM protein classification. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, volume 15, Cambridge, MA, 2002. MIT Press.Google ScholarGoogle Scholar
  18. L. Liao and W. S. Noble. Combining pairwise sequence similarity and support vector machines for remote protein homology detection. In RECOMB, pages 225--232, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors, Neural Networks for Signal Processing IX, pages 41--48. IEEE, 1999.Google ScholarGoogle Scholar
  20. R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Matching 3D Models with Shape Distributions. In International Conference on Shape Modeling and Applications, pages 154--166, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G. Rätsch, S. Sonnenburg, and B. Schölkopf. Rase: recognition of alternatively spliced exons in c.elegans. Bioinformatics, 21 Suppl 1:i369--i377, Jun 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997. Download: http://www.kernel-machines.org.Google ScholarGoogle Scholar
  23. B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.Google ScholarGoogle Scholar
  24. B. Schölkopf, A. J. Smola, and K.-R. Müller. Kernel principal component analysis. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 327--352. MIT Press, Cambridge, MA, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J.-L. Shih, C.-H. Lee, and J. Wang. 3D object retrieval system based on grid D2. Electronics Letters, 41(4), 2005.Google ScholarGoogle ScholarCross RefCross Ref
  26. P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The Princeton Shape Benchmark. In Shape Modeling International, Genova, Italy, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  27. S. Sonnenburg, G. Rätsch, and B. Schölkopf. Large scale genomic sequence svm classifiers. In International Conference on Machine Learning, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Sonnenburg, G. Rätsch, and B. Schölkopf. A General and Efficient Multiple Kernel Learning Algorithm. In Neural Information Processing Systems, 2005.Google ScholarGoogle Scholar
  29. V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. V. N. Vishwanathan and A. J. Smola. Fast kernels for string and tree matching. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 569--576. MIT Press, Cambridge, MA, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. C. Watkins. Dynamic alignment kernels. CSD-TR-98- 11, Royal Holloway, University of London, Egham, Surrey, UK, 1999.Google ScholarGoogle Scholar
  32. A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites. Bioinformatics, 16(9):799--807, Sept. 2000.Google ScholarGoogle Scholar

Index Terms

  1. 3DString: a feature string kernel for 3D object classification on voxelized data

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CIKM '06: Proceedings of the 15th ACM international conference on Information and knowledge management
      November 2006
      916 pages
      ISBN:1595934332
      DOI:10.1145/1183614

      Copyright © 2006 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 6 November 2006

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate1,861of8,427submissions,22%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader