skip to main content
10.1145/1186822.1073298acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Animating sand as a fluid

Published:01 July 2005Publication History

ABSTRACT

We present a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes of sand, we abstract away the individual grains and think of the sand as a continuum. In particular we show that an existing water simulator can be turned into a sand simulator with only a few small additions to account for inter-grain and boundary friction.We also propose an alternative method for simulating fluids. Our core representation is a cloud of particles, which allows for accurate and flexible surface tracking and advection, but we use an auxiliary grid to efficiently enforce boundary conditions and incompressibility. We further address the issue of reconstructing a surface from particle data to render each frame.

Skip Supplemental Material Section

Supplemental Material

pps068.mp4

mp4

33.3 MB

References

  1. Adalsteinsson, D., and Sethian, J. 1999. The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bardenhagen, S. G., Brackbill, J. U., and Sulsky, D. 2000. The material-point method for granular materials. Comput. Methods Appl. Mech. Engrg. 187, 529--541.Google ScholarGoogle ScholarCross RefCross Ref
  3. Blinn, J. 1982. A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3, 235--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brackbill, J. U., and Ruppel, H. M. 1986. FLIP: a method for adaptively zoned, particle-in-cell calculuations of fluid flows in two dimensions. J. Comp. Phys. 65, 314--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Carlson, M., Mucha, P., Van Horn II, R., and Turk, G. 2002. Melting and flowing. In Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Comput. Anim. and Sim. '96 (Proc. of EG Workshop on Anim. and Sim.), Springer-Verlag, R. Boulic and G. Hegron, Eds., 61--76. Published under the name Marie-Paule Gascuel. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comp. Phys. 183, 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., no. FEDSM2003-45144, ASME.Google ScholarGoogle Scholar
  12. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. SIGGRAPH, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. SIGGRAPH, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models and Image Processing 58, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Génevaux, O., Habibi, A., and Dischler, J.-M. 2003. Simulating fluid-solid interaction. In Graphics Interface, 31--38.Google ScholarGoogle Scholar
  16. Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 463--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Nonconvex rigid bodies with stacking. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Harlow, F., and Welch, J. 1965. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Phys. Fluids 8, 2182--2189.Google ScholarGoogle ScholarCross RefCross Ref
  19. Harlow, F. H. 1963. The particle-in-cell method for numerical solution of problems in fluid dynamics. In Experimental arithmetic, high-speed computations and mathematics.Google ScholarGoogle Scholar
  20. Herrmann, H. J., and Luding, S. 1998. Modeling granular media on the computer. Continuum Mech. Therm. 10, 189--231.Google ScholarGoogle ScholarCross RefCross Ref
  21. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 253--262.Google ScholarGoogle ScholarCross RefCross Ref
  22. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jaeger, H. M., Nagel, S. R., and Behringer, R. P. 1996. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 4, 1259--1273.Google ScholarGoogle ScholarCross RefCross Ref
  24. Konagai, K., and Johansson, J. 2001. Two dimensional Lagrangian particle finite-difference method for modeling large soil deformations. Structural Eng./Earthquake Eng., JSCE 18, 2, 105s--110s.Google ScholarGoogle Scholar
  25. Kothe, D. B., and Brackbill, J. U. 1992. FLIP-INC: a particle-in-cell method for incompressible flows. Unpublished manuscript.Google ScholarGoogle Scholar
  26. Lamorlette, A. 2001. Shrek effects---flames and dragon fireballs. SIGGRAPH Course Notes, Course 19, 55--66.Google ScholarGoogle Scholar
  27. Li, X., and Moshell, J. M. 1993. Modeling soil: Realtime dynamic models for soil slippage and manipulation. In Proc. SIGGRAPH, 361--368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Luciani, A., Habibi, A., and Manzotti, E. 1995. A multiscale physical model of granular materials. In Graphics Interface, 136--146.Google ScholarGoogle Scholar
  30. Milenkovic, V. J., and Schmidl, H. 2001. Optimization-based animation. In Proc. SIGGRAPH, 37--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Milenkovic, V. J. 1996. Position-based physics: simulating the motion of many highly interacting spheres and polyhedra. In Proc. SIGGRAPH, 129--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Miller, G., and Pearce, A. 1989. Globular dynamics: a connected particle system for animating viscous fluids. In Comput. & Graphics, vol. 13, 305--309.Google ScholarGoogle ScholarCross RefCross Ref
  33. Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543--574.Google ScholarGoogle ScholarCross RefCross Ref
  34. Müller, M., and Gross, M. 2004. Interactive virtual materials. In Graphics Interface. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Nayak, G. C., and Zienkiewicz, O. C. 1972. Elasto-plastic stress analysis. A generalization for various constitutive relations including strain softening. Int. J. Num. Meth. Eng. 5, 113--135.Google ScholarGoogle ScholarCross RefCross Ref
  37. O'Brien, J., Bargteil, A., and Hodgins, J. 2002. Graphical modeling of ductile fracture. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Onoue, K., and Nishita, T. 2003. Virtual sandbox. In Pacific Graphics, 252--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Pharr, M., and Humphreys, G. 2004. Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle--based simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), vol. 22, 401--410.Google ScholarGoogle ScholarCross RefCross Ref
  41. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directible photorealistic liquids. In Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Savage, S. B., and Hutter, K. 1989. The motion of a finite mass of granular material down a rough incline. J. Flui Mech. 199, 177--215.Google ScholarGoogle ScholarCross RefCross Ref
  43. Shen, C., O'Brien, J. F., and Shewchuk, J. R. 2004. Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 896--904. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Smith, I. M., and Griffiths, D. V. 1998. Programming the Finite Element Method. J. Wiley & Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Stam, J. 1999. Stable fluids. In Proc. SIGGRAPH, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Sulsky, D., Zhou, S.-J., and Schreyer, H. L. 1995. Application of particle-in-cell method to solid mechanics. Comp. Phys. Comm. 87, 236--252.Google ScholarGoogle ScholarCross RefCross Ref
  47. Sumner, R. W., O'Brien, J. F., and Hodgins, J. K. 1998. Animating sand, mud, and snow. In Graphics Interface, 125--132.Google ScholarGoogle Scholar
  48. Sussman, M. 2003. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comp. Phys. 187, 110--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., and Ueki, H. 2003. Realistic animation of fluid with splash and foam. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 391--400.Google ScholarGoogle ScholarCross RefCross Ref
  50. Takeshita, D., Ota, S., Tamura, M., Fujimoto, T., and Chiba, N. 2003. Visual simulation of explosive flames. In Pacific Graphics, 482--486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: viscoelasticity, plasticity, fracture. Proc. SIGGRAPH, 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Zhao, H. 2005. A fast sweeping method for Eikonal equations. Math. Comp. 74, 603--627.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Animating sand as a fluid

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGGRAPH '05: ACM SIGGRAPH 2005 Papers
          July 2005
          826 pages
          ISBN:9781450378253
          DOI:10.1145/1186822
          • Editor:
          • Markus Gross

          Copyright © 2005 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2005

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          SIGGRAPH '05 Paper Acceptance Rate98of461submissions,21%Overall Acceptance Rate1,822of8,601submissions,21%

          Upcoming Conference

          SIGGRAPH '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader