skip to main content
10.1145/1188455.1188544acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
Article

Scalable algorithms for molecular dynamics simulations on commodity clusters

Published:11 November 2006Publication History

ABSTRACT

Although molecular dynamics (MD) simulations of biomolecular systems often run for days to months, many events of great scientific interest and pharmaceutical relevance occur on long time scales that remain beyond reach. We present several new algorithms and implementation techniques that significantly accelerate parallel MD simulations compared with current state-of-the-art codes. These include a novel parallel decomposition method and message-passing techniques that reduce communication requirements, as well as novel communication primitives that further reduce communication time. We have also developed numerical techniques that maintain high accuracy while using single precision computation in order to exploit processor-level vector instructions. These methods are embodied in a newly developed MD code called Desmond that achieves unprecedented simulation throughput and parallel scalability on commodity clusters. Our results suggest that Desmond's parallel performance substantially surpasses that of any previously described code. For example, on a standard benchmark, Desmond's performance on a conventional Opteron cluster with 2K processors slightly exceeded the reported performance of IBM's Blue Gene/L machine with 32K processors running its Blue Matter MD code.

References

  1. G. Almasi, C. Archer, J. G. Castanos, et al., Design and Implementation of Message-Passing Services for the Blue Gene/L Supercomputer, IBM J. Res. & Dev., 49(2-3): 393--406, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. I. T. Arkin, H. Xu, K. J. Bowers, et al., Mechanism of a Na+/H+ Antiporter, submitted, 2006.Google ScholarGoogle Scholar
  3. K. J. Bowers, Speed Optimal Implementation of a Fully Relativistic 3D Particle Push with a Charge Conserving Current Accumulate on Modern Processors, presented at 18th International Conference on the Numerical Simulation of Plasmas, Cape Cod, MA, 2003.Google ScholarGoogle Scholar
  4. K. J. Bowers, R. O. Dror, and D. E. Shaw, Overview of Neutral Territory Methods for the Parallel Evaluation of Pairwise Particle Interactions, J. Phys. Conf. Ser., 16: 300--304, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  5. K. J. Bowers, R. O. Dror, and D. E. Shaw, The Midpoint Method for Parallelization of Particle Simulations, J. Chem. Phys., 124: 184109, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  6. K. J. Bowers, R. O. Dror, and D. E. Shaw, Zonal Methods for the Parallel Execution of Range-Limited N-Body Problems, in press, J. Comput. Phys., 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, et al., CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations, J. Comput. Chem., 4: 187--217, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  8. C. L. Brooks, B. M. Pettit, and M. Karplus, Structural and Energetic Effects of Truncating Long Ranged Interactions in Ionic and Polar Fluids, J. Chem. Phys., 83(11): 5897--5908, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  9. F. Cappello and D. Etiemble, MPI Versus MPI+OpenMP on the IBM SP for the NAS Benchmarks, presented at ACM/IEEE SC2000 Conference, Dallas, TX, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. A. Case, T. E. Cheatham, III, T. Darden, et al., The Amber Biomolecular Simulation Programs, J. Comput. Chem., 26(16): 1668--1688, 2005.Google ScholarGoogle Scholar
  11. E. Chow and D. Hysom, Assessing Performance of Hybrid MPI/OpenMP Programs on SMP Clusters, Lawrence Livermore National Laboratory UCRL-JC-143957, 2001.Google ScholarGoogle Scholar
  12. T. Darden, D. York, and L. Pedersen, Particle Mesh Ewald: An N Log(N) Method for Ewald Sums in Large Systems, J. Chem. Phys., 98(12): 10089--10092, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  13. Y. Duan and P. A. Kollman, Pathways to a Protein Folding Intermediate Observed in a 1-Microsecond Simulation in Aqueous Solution, Science, 282(5389): 740--744, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, et al., Scalable Framework for 3D FFTs on the Blue Gene/L Supercomputer: Implementation and Early Performance Measurements, IBM J. Res. & Dev., 49(2-3): 457--464, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, et al., Blue Matter: Strong Scaling of Molecular Dynamics on Blue Gene/L, IBM RC23888, February 22, 2006.Google ScholarGoogle Scholar
  16. B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, et al., Blue Matter: Approaching the Limits of Concurrency for Classical Molecular Dynamics, IBM RC23956, May 12, 2006.Google ScholarGoogle Scholar
  17. B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, et al., Blue Matter: Strong Scaling of Molecular Dynamics on Blue Gene/L, IBM RC23688, August 5, 2005.Google ScholarGoogle Scholar
  18. M. Frigo and S. G. Johnson, The Design and Implementation of FFTW3, Proceedings of the IEEE, 93(2): 216--231, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. S. Germain, B. Fitch, A. Rayshubskiy, et al., Blue Matter on Blue Gene/L: Massively Parallel Computation for Biomolecular Simulation, presented at 3rd IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis (CODES+ISSS'05), New York, NY, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. T. A. Halgren, MMFF VII. Characterization of MMFF94, MMFF94s, and Other Widely Available Force Fields for Conformational Energies and for Intermolecular-Interaction Energies and Geometries, J. Comput. Chem., 20(7): 730--748, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  21. G. S. Heffelfinger, Parallel Atomistic Simulations, Comput. Phys. Commun., 128(1-2): 219--237, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  22. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, J. Am. Chem. Soc., 118(45): 11225--11236, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  23. P. A. Kollman, R. W. Dixon, W. D. Cornell, et al., "The Development/Application of a "Minimalist" Organic/Biomolecular Mechanic Forcefield Using a Combination of Ab Initio Calculations and Experimental Data," in Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, W. F. van Gunsteren and P. K. Weiner, Eds. Dordrecht, Netherlands: ESCOM, 1997, 83--96.Google ScholarGoogle Scholar
  24. S. Kumar, G. Almasi, C. Huang, et al., Achieving Strong Scaling with NAMD on Blue Gene/L, presented at IEEE International Parallel & Distributed Processing Symposium, Rhodes Island, Greece, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Liu, J. Wu, and D. K. Panda, High Performance RDMA-Based MPI Implementation over InfiniBand, presented at 17th International Conference on Supercomputing, San Francisco, CA, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. MacKerell, A. D., D. Bashford, M. Bellott, et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, J. Phys. Chem. B, 102(18): 3586--3616, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  27. P. Mark and L. Nilsson, Structure and Dynamics of Liquid Water with Different Long-Range Interaction Truncation and Temperature Control Methods in Molecular Dynamics Simulations, J. Comput. Chem., 23(13): 1211--1219, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  28. Mellanox Technologies, Mellanox IB-Verbs API (VAPI): Mellanox Software Programmer's Interface for InfiniBand Verbs, 2001.Google ScholarGoogle Scholar
  29. T. Narumi, A. Kawai, and T. Koishi, An 8.61 Tflop/s Molecular Dynamics Simulation for NaCl with a Special-Purpose Computer: MDM, presented at ACM/IEEE SC2001 Conference, Denver, Colorado, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Norberg and L. Nilsson, On the Truncation of Long-Range Electrostatic Interactions in DNA, Biophys. J., 79(3): 1537--1553, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  31. V. S. Pande, I. Baker, J. Chapman, et al., Atomistic Protein Folding Simulations on the Submillisecond Time Scale Using Worldwide Distributed Computing, Biopolymers, 68(1): 91--109, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  32. P. M. Papadopoulos, M. J. Katz, and G. Bruno, NPACI Rocks: Tools and Techniques for Easily Deploying Manageable Linux Clusters, Concurrency Comput. Pract. Ex., 15(7-8): 707--725, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  33. M. Patra, M. Karttunen, T. Hyvönen, et al., Molecular Dynamics Simulations of Lipid Bilayers: Major Artifacts Due to Truncating Electrostatic Interactions, Biophys. J., 84: 3636--3645, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  34. J. C. Phillips, R. Braun, W. Wang, et al., Scalable Molecular Dynamics with NAMD, J. Comput. Chem., 26(16): 1781--1802, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  35. J. C. Phillips, G. Zheng, S. Kumar, et al., NAMD: Biomolecular Simulation on Thousands of Processors, presented at ACM/IEEE SC2002 Conference, Baltimore, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics, J. Comput. Phys., 117(1): 1--19, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. S. Plimpton and B. Hendrickson, Parallel Molecular-Dynamics Simulations of Organic Materials, Int. J. Mod. Phys. C., 5(2): 295--298, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  38. S. Plimpton and B. Hendrickson, A New Parallel Method for Molecular Dynamics Simulation of Macromolecular Systems, J. Comput. Chem., 17(3): 326--337, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  39. W. R. P. Scott, P. H. Hünenberger, I. G. Tironi, et al., The GROMOS Biomolecular Simulation Program Package, J. Phys. Chem. A, 103(19): 3596--3607, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  40. M. M. Seibert, A. Patriksson, B. Hess, et al., Reproducible Polypeptide Folding and Structure Prediction Using Molecular Dynamics Simulations, J. Mol. Biol., 354(1): 173--183, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  41. Y. Shan, J. L. Klepeis, M. P. Eastwood, et al., Gaussian Split Ewald: A Fast Ewald Mesh Method for Molecular Simulation, J. Chem. Phys., 122: 054101, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  42. T. Shanley, InfiniBand Network Architecture. Boston: Addison-Wesley, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. D. E. Shaw, A Fast, Scalable Method for the Parallel Evaluation of Distance-Limited Pairwise Particle Interactions, J. Comput. Chem., 26(13): 1318--1328, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  44. M. Snir, A Note on N-Body Computations with Cutoffs, Theor. Comput. Syst., 37: 295--318, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  45. D. van der Spoel, E. Lindahl, B. Hess, et al., GROMACS: Fast, Flexible, and Free, Journal of Computational Chemistry, 26(16): 1701--1718, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  46. M. Taiji, T. Narumi, Y. Ohno, et al., Protein Explorer: A Petaflops Special-Purpose Computer System for Molecular Dynamics Simulations, presented at ACM/IEEE SC2003 Conference, Phoenix, Arizona, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. R. Zhou and B. J. Berne, A New Molecular Dynamics Method Combining the Reference System Propagator Algorithm with a Fast Multipole Method for Simulating Proteins and Other Complex Systems, J. Chem. Phys., 103(21): 9444--9459, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  48. R. Zhou, E. Harder, H. Xu, et al., Efficient Multiple Time Step Method for Use with Ewald and Particle Mesh Ewald for Large Biomolecular Systems, J. Chem. Phys., 115(5): 2348--2358, 2001.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Scalable algorithms for molecular dynamics simulations on commodity clusters

                    Recommendations

                    Comments

                    Login options

                    Check if you have access through your login credentials or your institution to get full access on this article.

                    Sign in
                    • Published in

                      cover image ACM Conferences
                      SC '06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing
                      November 2006
                      746 pages
                      ISBN:0769527000
                      DOI:10.1145/1188455

                      Copyright © 2006 ACM

                      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                      Publisher

                      Association for Computing Machinery

                      New York, NY, United States

                      Publication History

                      • Published: 11 November 2006

                      Permissions

                      Request permissions about this article.

                      Request Permissions

                      Check for updates

                      Qualifiers

                      • Article

                      Acceptance Rates

                      SC '06 Paper Acceptance Rate54of239submissions,23%Overall Acceptance Rate1,516of6,373submissions,24%

                    PDF Format

                    View or Download as a PDF file.

                    PDF

                    eReader

                    View online with eReader.

                    eReader

                    HTML Format

                    View this article in HTML Format .

                    View HTML Format