skip to main content
article

Simulation of random cell displacements in QCA

Published:01 April 2007Publication History
Skip Abstract Section

Abstract

We analyze the behavior of quantum-dot cellular automata (QCA) building blocks in the presence of random cell displacements. The QCA cells are modeled using the coherence vector description and simulated using QCADesigner. We evaluate various fundamental circuits: the wire, the inverter, the majority gate, and the two-wire crossing approaches: the coplanar crossover and the multilayer crossover. Our results show that different building blocks have different displacement tolerances. The coplanar crossover and inverter perform the weakest. The wire is the most robust. We have found displacement tolerances to be a function of circuit layout and geometry rather than cell size.

References

  1. Blair, E. P. 2003. Tools for the design and simulation of clocked molecular quantum-dot cellular automata circuits. Tech. rep., University of Notre Dame, Notre Dame, IN.Google ScholarGoogle Scholar
  2. Gin, A., Tougaw, P. D., and Williams, S. 1999. An alternative geometry for quantum-dot cellular automata. J. Appl. Phys. 85, 12 (June), 8281--8286.Google ScholarGoogle Scholar
  3. Gupta, P., Jha, N. K., and Lingappan, L. 2006. Test generation for combinational quantum cellular automata (qca) circuits. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE '06). Leuven, Belgium. European Design and Automation Association, 311--316. Google ScholarGoogle Scholar
  4. Huang, J., Momenzadeh, M., Tahoori, M. B., and Lombardi, F. 2004. Defect characterization for scaling of QCA devices. In Proceedings of the 19th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems. Google ScholarGoogle Scholar
  5. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G. H., and Porod, W. 2006. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 5758, 205--208.Google ScholarGoogle Scholar
  6. Jiao, J., Long, G. J., Grandjean, F., Beatty, A. M., and Fehlner, T. P. 2003. Building blocks for the molecular expression of quantum cellular automata. isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. J. Am. Chem. Soc. 125, 25, 7522--7523.Google ScholarGoogle Scholar
  7. Lent, C. S. 1993. Quantum cellular automata. Nanotechnology 4, 49--57.Google ScholarGoogle Scholar
  8. Lent, C. S. and Isaksen, B. 2003. Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50, 9, 1890--1896.Google ScholarGoogle Scholar
  9. Lent, C. S., Isaksen, B., and Lieberman, M. 2003. Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056--1063.Google ScholarGoogle Scholar
  10. Lent, C. S. and Tougaw, P. D. 1997. A device architecture for computing with quantum dots. Proceedings of IEEE 85, 4 (April), 541--557.Google ScholarGoogle Scholar
  11. Lu, Y. and Lent, C. S. 2005. Theoretical study of molecular quantum-dot cellular automata. J. Comput. Elec. 4, 115--118.Google ScholarGoogle Scholar
  12. Macucci, M., Gattobigio, M., Bonci, L., Iannaccone, G., Prins, F. E., Single, C., Wetekam, G., and Kern, D. P. 2004. A QCA cell in silicon-on-insulator technology: theory and experiment. Superlatt. Microstruct. 34, 3 (Sept.), 205--211.Google ScholarGoogle Scholar
  13. Mahler, G. and Weberrüs, V. A. 1998. Quantum Networks: Dynamics of Open Nanostructures. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  14. Orlov, A. O., Kummamuru, R. K., Ramasubramaniam, R., Lent, C. S., Berstein, G. H., and Snider, G. L. 2003. Clocked quantum-dot cellular automata shift register. Surf. Sci. 532--535, 1193--1198.Google ScholarGoogle Scholar
  15. Tahoori, M. B., Huang, J., Momenzadeh, M., and Lombardi, F. 2004. Testing of quantum cellular automata. IEEE Trans. Nano. 3, 4 (Dec.), 432--442. Google ScholarGoogle Scholar
  16. Tahoori, M. B., Momenzadeh, M., Huang, J., and Lombardi, F. 2004. Defects and faults in quantum cellular automata at nano scale. In Proceedings of the 22nd IEEE VLSI Test Symposium. Washington, DC. IEEE Computer Society, 291. Google ScholarGoogle Scholar
  17. Timler, J. and Lent, C. S. 2002. Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 2 (Jan.), 823--831.Google ScholarGoogle Scholar
  18. Timler, J. and Lent, C. S. 2003. Maxwell's demon and quantum-dot cellular automata. J. Appl. Phys. 94, 2 (July), 1050--1060.Google ScholarGoogle Scholar
  19. Tóth, G. 2000. Correlation and coherence in quantum-dot cellular automata. Ph.D. thesis, University of Notre Dame, Notre Dame, IN 46556.Google ScholarGoogle Scholar
  20. Tougaw, P. D. and Lent, C. S. 1996. Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80, 8 (Oct.), 4722--4735.Google ScholarGoogle Scholar
  21. Walus, K. and Jullien, G. A. 2006. Design tools for an emerging soc technology: quantum-dot cellular automata. Proceedings of IEEE 94, 6 (June), 1225--1244.Google ScholarGoogle Scholar
  22. Walus, K., Mazur, M., Schulhof, G., and Jullien, G. A. 2005. Simple 4-bit processor based on quantum-dot cellular automata (QCA). In Proceedings of Application Specific Architectures, and Processors Conference. 288--293. Google ScholarGoogle Scholar
  23. Walus, K. and Schulhof, G. 2001. QCADesigner Homepage. http://www.qcadesigner.ca/.Google ScholarGoogle Scholar
  24. Walus, K., Schulhof, G., and Jullien, G. A. 2004. High level exploration of quantum-dot cellular automata (QCA). In Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers.Google ScholarGoogle Scholar
  25. Walus, K., Schulhof, G., Zhang, R., Wang, W., and Jullien, G. A. 2004. Circuit design based on majority gates for applications with quantum-dot cellular automata. In Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers.Google ScholarGoogle Scholar
  26. Wang, W., Walus, K., and Jullien, G. A. 2003. Quantum-dot cellular automata adders. In Proceedings of IEEE Conference on Nanotechnology.Google ScholarGoogle Scholar

Index Terms

  1. Simulation of random cell displacements in QCA

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader