skip to main content
10.1145/1250790.1250818acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article

Balanced max 2-sat might not be the hardest

Published:11 June 2007Publication History

ABSTRACT

We show that, assuming the Unique Games Conjecture, it is NP-hard to approximate MAX2SAT within αLLZ-+ε, where 0.9401 < αLLZ- < 0.9402 is the believed approximation ratio of the algorithm of Lewin, Livnat and Zwick [28].

This result is surprising considering the fact that balanced instances of MAX2SAT, i.e., instances where each variable occurs positively and negatively equally often, can be approximated within 0.9439. In particular, instances in which roughly 68% of the literals are unnegated variables and 32% are negated appear less amenable to approximation than instances where the ratio is 50% - 50%.

References

  1. F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM Journal on Optimization, 5:13--51, 1995.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Arora, E. Chlamtac, and M. Charikar. New Approximation Guarantee for Chromatic Number. In STOC 2006, pages 205--214, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification and the Hardness of Approximation Problems. Journal of the ACM, 45(3):501--555, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Arora and S. Safra. Probabilistic Checking of Proofs: A New Characterization of NP. Journal of the ACM, 45(1):70--122, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. P. Austrin. Balanced Max 2-Sat might not be the hardest. Technical report, Electronic Colloquium on Computational Complexity Report TR06-088, 2006.Google ScholarGoogle Scholar
  6. A. Blum and D. Karger. An Õ(n3/14)-coloring algorithm for 3-colorable graphs. Information Processing Letters, 61(1):49--53, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Charikar, K. Makarychev, and Y. Makarychev. Approximation Algorithm for the Max k-CSP Problem, 2006.Google ScholarGoogle Scholar
  8. M. Charikar, K. Makarychev, and Y. Makarychev. Near-optimal algorithms for unique games. In STOC 2006, pages 205--214, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Charikar and A. Wirth. Maximizing Quadratic Programs: Extending Grothendieck's Inequality. In FOCS 2004, pages 54--60, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness of approximating multicut and sparsest-cut. In 20th Annual IEEE Conference on Computational Complexity, pages 144--153, June 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. P. Crescenzi, R. Silvestri, and L. Trevisan. On Weighted vs Unweighted Versions of Combinatorial Optimization Problems. Information and Computation, 167(1):10--26, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. I. Dinur, E. Mossel, and O. Regev. Conditional hardness for approximate coloring. In STOC 2006, pages 344--353, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634--652, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. U. Feige and M. Goemans. Aproximating the Value of Two Prover Proof Systems, With Applications to MAX 2SAT and MAX DICUT. In ISTCS 1995, pages 182--189, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. U. Feige and J. Kilian. Zero Knowledge and the Chromatic Number. Journal of Computer and System Sciences, 57(2):187--199, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M.X. Goemans and D.P. Williamson. Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM, 42:1115--1145, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Halperin, R. Nathaniel, and U. Zwick. Coloring k-colorable graphs using smaller palettes. In SODA 2001, pages 319--326, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. Hast. Approximating Max kCSP -- Outperforming a Random Assignment with Almost a Linear Factor. In ICALP 2005, pages 956--968, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Håstad. Clique is hard to approximate within n1-ε. Acta Mathematica, 48(4):105--142, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798--859, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Håstad. On the approximation resistance of a random predicate. Manuscript, 2006.Google ScholarGoogle Scholar
  22. D.R. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite programming. Journal of the ACM, 45(2):246--265, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Khot. On the power of unique 2-prover 1-round games. In STOC 2002, pages 767--775, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. Optimal Inapproximability Results for Max-Cut and Other 2-Variable CSPs? In FOCS 2004, pages 146--154. IEEE Computer Society, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Khot and R. O'Donnell. SDP gaps and UGC-hardness for MAXCUTGAIN. In FOCS, pages 217--226. IEEE Computer Society, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Khot and O. Regev. Vertex Cover Might be Hard to Approximate to within 2-ε. In IEEE Conference on Computational Complexity, pages 379--. IEEE Computer Society, 2003.Google ScholarGoogle Scholar
  27. S. Khot and N.K. Vishnoi. The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1. In FOCS 2005, pages 53--62, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for the MAX 2-SAT and MAX DI-CUT problems. In IPCO 2002, volume 2337 of Lecture Notes in Computer Science, pages 67--82, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Matuura and T. Matsui. 0.863-approximation algorithm for max dicut. In RANDOM-APPROX, pages 138--146, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Matuura and T. Matsui. 0.935-Approximation Randomized Algorithm for MAX 2SAT and Its Derandomization. Technical Report METR 2001-03, Department of Mathematical Engineering and Information Physics, the University of Tokyo, Japan, 2001.Google ScholarGoogle Scholar
  31. E. Mossel, R. O'Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences: invariance and optimality. Preprint, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Samorodnitsky and L. Trevisan. Gowers uniformity, influence of variables, and PCPs. In STOC 2006, pages 11--20, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. U. Zwick. Personal communication, 2005.Google ScholarGoogle Scholar

Index Terms

  1. Balanced max 2-sat might not be the hardest

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing
      June 2007
      734 pages
      ISBN:9781595936318
      DOI:10.1145/1250790

      Copyright © 2007 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 June 2007

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader