skip to main content
article

Algebraic point set surfaces

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

In this paper we present a new Point Set Surface (PSS) definition based on moving least squares (MLS) fitting of algebraic spheres. Our surface representation can be expressed by either a projection procedure or in implicit form. The central advantages of our approach compared to existing planar MLS include significantly improved stability of the projection under low sampling rates and in the presence of high curvature. The method can approximate or interpolate the input point set and naturally handles planar point clouds. In addition, our approach provides a reliable estimate of the mean curvature of the surface at no additional cost and allows for the robust handling of sharp features and boundaries. It processes a simple point set as input, but can also take significant advantage of surface normals to improve robustness, quality and performance. We also present an novel normal estimation procedure which exploits the properties of the spherical fit for both direction estimation and orientation propagation. Very efficient computational procedures enable us to compute the algebraic sphere fitting with up to 40 million points per second on latest generation GPUs.

Skip Supplemental Material Section

Supplemental Material

pps023.mp4

mp4

52.6 MB

References

  1. Adams, B., and Dutré, P. 2003. Interactive boolean operations on surfel-bounded solids. ACM Transactions on Graphics (SIGGRAPH 2003 Proceedings) 22, 3, 651--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adamson, A., and Alexa, M. 2003. Approximating and intersecting surfaces from points. In Proceedings of the Eurographics Symposium on Geometry Processing 2003, 230--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Adamson, A., and Alexa, M. 2004. Approximating bounded, non-orientable surfaces from points. In Proceedings of Shape Modeling International 2004, IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Adamson, A., and Alexa, M. 2006. Anisotropic point set surfaces. In Afrigraph '06: Proceedings of the 4th international conference on Computer graphics, virtual reality, visualisation and interaction in Africa, ACM Press, 7--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Adamson, A., and Alexa, M. 2006. Point-sampled cell complexes. ACM Transactions on Graphics (SIGGRAPH 2003 Proceedings) 25, 3, 671--680. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Alexa, M., and Adamson, A. 2004. On normals and projection operators for surfaces defined by point sets. In Proceedings of the Eurographics Symposium on Point-Based Graphics, 149--156. Google ScholarGoogle ScholarCross RefCross Ref
  7. Alexa, M., and Adamson, A. 2006. Interpolatory point set surfaces - convexity and hermite data. Submitted paper.Google ScholarGoogle Scholar
  8. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. 2003. Computing and rendering point set surfaces. IEEE Transactions on Computer Graphics and Visualization 9, 1, 3--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Amenta, N., and Kil, Y. 2004. Defining point-set surfaces. ACM Transactions on Graphics (SIGGRAPH 2004 Proceedings) 23, 3, 264--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Amenta, N., and Kil, Y. 2004. The domain of a point set surface. In Proceedings of the Eurographics Symposium on Point-Based Graphics 2004, 139--147. Google ScholarGoogle ScholarCross RefCross Ref
  11. Boissonnat, J.-D., and Cazals, F. 2000. Smooth shape reconstruction via natural neighbor interpolation of distance functions. In Proceedings of the 16th Annual Symposium on Computational Geometry, ACM Press, 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dey, T. K., and Sun, J. 2005. An adaptive MLS surface for reconstruction with guarantees. In Proceedings of the Eurographics Symposium on Geometry Processing 2005, 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Dey, T. K., Goswami, S., and Sun, J. 2005. Extremal surface based projections converge and reconstruct with isotopy. manuscript.Google ScholarGoogle Scholar
  14. Fleishman, S., Cohen-Or, D., and Silva, C. T. 2005. Robust moving least-squares fitting with sharp features. ACM Transactions on Graphics (SIGGRAPH 2005 Proceedings) 24, 3, 544--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gander, W., Golub, G. H., and Strebel, R. 1994. Least-squares fitting of circles and ellipses. BIT Numerical Mathematics 34, 4, 558--578.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Guennebaud, G., Barthe, L., and Paulin, M. 2005. Interpolatory refinement for real-time processing of point-based geometry. Computer Graphics Forum (Proceedings of Eurographics 2005) 24, 3, 657--666.Google ScholarGoogle Scholar
  17. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. In Proc. of ACM SIGGRAPH '92, ACM Press, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proceedings of the Eurographics Symposium on Geometry Processing 2006, 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kolluri, R. 2005. Provably good moving least squares. In ACM-SIAM Symposium on Discrete Algorithms, 1008--1018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Levin, D. 2003. Mesh-independent surface interpolation. Geometric Modeling for Scientific Visualization, 181--187.Google ScholarGoogle Scholar
  21. Mitra, N. J., Nguyen, A., and Guibas, L. 2004. Estimating surface normals in noisy point cloud data. International Journal of Computational Geometry and Applications 14, 4--5, 261--276.Google ScholarGoogle ScholarCross RefCross Ref
  22. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.-P. 2003. Multi-level partition of unity implicits. ACM Transactions on Graphics (SIGGRAPH 2003 Proceedings) 22, 3, 463--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pauly, M., Keiser, R., Kobbelt, L. P., and Gross, M. 2003. Shape modeling with point-sampled geometry. ACM Transactions on Graphics (SIGGRAPH 2003 Proceedings) 22, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pauly, M., Mitra, N. J., and Guibas, L. 2004. Uncertainty and variability in point cloud surface data. In Proceedings of the Eurographics Symposium on Point-Based Graphics, 77--84. Google ScholarGoogle ScholarCross RefCross Ref
  25. Pratt, V. 1987. Direct least-squares fitting of algebraic surfaces. In Proc. of ACM SIGGRAPH '87, ACM Press, 145--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Shen, C., O'Brien, J. F., and Shewchuk, J. R. 2004. Interpolating and approximating implicit surfaces from polygon soup. ACM Transactions on Graphics (SIGGRAPH 2004), 896--904. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wald, I., and Seidel, H.-P. 2005. Interactive ray tracing of point based models. In Proceedings of the Eurographics Symposium on Point Based Graphics 2005. Google ScholarGoogle ScholarCross RefCross Ref
  28. Waschbüsch, M., Gross, M., Eberhard, F., Lamboray, E., and Würmlin, S. 2004. Progressive compression of point-sampled models. In Proceedings of the Eurographics Symposium on Point-Based Graphics 2004, 95--102. Google ScholarGoogle ScholarCross RefCross Ref
  29. Wicke, M., Teschner, M., and Gross, M. 2004. CSG tree rendering of point-sampled objects. In Proceedings of Pacific Graphics 2004, 160--168. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Algebraic point set surfaces

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader