skip to main content
article

Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

We describe a theoretical framework for reversibly modulating 4D light fields using an attenuating mask in the optical path of a lens based camera. Based on this framework, we present a novel design to reconstruct the 4D light field from a 2D camera image without any additional refractive elements as required by previous light field cameras. The patterned mask attenuates light rays inside the camera instead of bending them, and the attenuation recoverably encodes the rays on the 2D sensor. Our mask-equipped camera focuses just as a traditional camera to capture conventional 2D photos at full sensor resolution, but the raw pixel values also hold a modulated 4D light field. The light field can be recovered by rearranging the tiles of the 2D Fourier transform of sensor values into 4D planes, and computing the inverse Fourier transform. In addition, one can also recover the full resolution image information for the in-focus parts of the scene.

We also show how a broadband mask placed at the lens enables us to compute refocused images at full sensor resolution for layered Lambertian scenes. This partial encoding of 4D ray-space data enables editing of image contents by depth, yet does not require computational recovery of the complete 4D light field.

Skip Supplemental Material Section

Supplemental Material

pps069.mp4

mp4

55.9 MB

References

  1. Accorsi, R., Gasparini, F., and Lanza, R. C. 2001. Optimal coded aperture patterns for improved SNR in nuclear medicine imaging. Nuclear Instruments and Methods in Physics Research A 474 (Dec.), 273--284.Google ScholarGoogle ScholarCross RefCross Ref
  2. Adelson, T., and Wang, J. 1992. Single lens stereo with a plenoptic camera. IEEE Trans. Pattern Anal. Machine Intell. 14, 99--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., and Cohen, M. 2004. Interactive digital photomontage. ACM Trans. Graph. 23, 3, 294--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization using graph cuts. IEEE Trans. Pattern Anal. Machine Intell. 23, 1222--1239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chaudhuri, S., and Rajagopalan, A. 1999. Depth from Defocus: A Real Aperture Imaging Approach. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  6. Dowski, E. R., and Cathey, W. 1995. Extended depth of field through wavefront coding. Appl. Optics 34, 11 (Apr.), 1859--1866.Google ScholarGoogle ScholarCross RefCross Ref
  7. Dowski, E. R., and Johnson, G. E. 1999. Wavefront coding: A modern method of achieving high performance and/or low cost imaging systems. In SPIE Annual Meeting.Google ScholarGoogle Scholar
  8. Farid, H., and Simoncelli, E. 1998. Range estimation by optical differentiation. J. Opt. Soc. of America A 15, 1, 1777--1786.Google ScholarGoogle ScholarCross RefCross Ref
  9. Fergus, R., Torralba, A., and Freeman, W. 2006. Random lens imaging. Tech. rep., MIT.Google ScholarGoogle Scholar
  10. Fessenden, R. 1908. Wireless telephony. Trans. American Institute of Electrical Engineers 27, 553--629.Google ScholarGoogle ScholarCross RefCross Ref
  11. Field, D. 1994. What is the goal of sensory coding? Neural Comput. 6, 559--601. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Georgiev, T., Zheng, C., Nayar, S., Curless, B., Salasin, D., and Intwala, C. 2006. Spatio-angular resolution trade-offs in integral photography. In Eurographics Symposium on Rendering, 263--272. Google ScholarGoogle ScholarCross RefCross Ref
  13. Gortler, S., Grzeszczuk, R., Szeliski, R., and Cohen, M. 1996. The lumigraph. In SIGGRAPH, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gottesman, S. R., and Fenimore, E. E. 1989. New family of binary arrays for coded aperture imaging. Appl. Optics 28, 20 (Oct), 4344--4352.Google ScholarGoogle ScholarCross RefCross Ref
  15. Haeberli, P., 1994. A multifocus method for controlling depth of field. GraficaObscura.Google ScholarGoogle Scholar
  16. Hiura, S., and Matsuyama, T. 1998. Depth measurement by the multi-focus camera. In Proc. Conf. Computer Vision and Pattern Recognition, 953--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Imatest. Image quality evaluation software. http://www.imatest.com/.Google ScholarGoogle Scholar
  18. Isaksen, A., McMillan, L., and Gortler, S. 2000. Dynamically reparameterized light fields. In SIGGRAPH, 297--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ives, H. 1928. Camera for making parallax panoramagrams. J. Opt. Soc. Amer. 17, 435--439.Google ScholarGoogle ScholarCross RefCross Ref
  20. Javidi, B., and Okano, F., Eds. 2002. Three-Dimensional Television, Video and Display Technologies. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Johnson, G. E., Dowski, E. R., and Cathey, W. T. 2000. Passive ranging through wave-front coding: Information and application. Applied Optics 39, 1700--1710.Google ScholarGoogle ScholarCross RefCross Ref
  22. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In SIGGRAPH 96, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, M., and Bolas, M. 2004. Synthetic aperture confocal imaging. ACM Trans. Graph. 23, 825--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lippmann, G. 1908. Epreuves reversible donnant la sensation du relief. J. Phys 7, 821--825.Google ScholarGoogle Scholar
  25. Lucy, L. 1974. An iterative technique for the rectification of observed distributions. J. Astronomy 79, 745--754.Google ScholarGoogle ScholarCross RefCross Ref
  26. Martnez-Corral, M., Javidi, B., Martnez-Cuenca, R., and Saavedra, G. 2004. Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays. Applied Optics 43, 5806--5813.Google ScholarGoogle ScholarCross RefCross Ref
  27. Nayar, S., and Mitsunaga, T. 2000. High dynamic range imaging: spatially varying pixel exposures. In Proc. Conf. Computer Vision and Pattern Recognition, vol. 1, 472--479.Google ScholarGoogle Scholar
  28. Nayar, S. K., Branzoi, V., and Boult, T. E. 2006. Programmable imaging: Towards a flexible camera. Int'l J. Computer Vision 70, 1, 7--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ng, R., Levoy, M., Brdif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light field photography with a hand-held plenoptic camera. Tech. rep., Stanford Univ.Google ScholarGoogle Scholar
  30. Ng, R. 2005. Fourier slice photography. ACM Trans. Graph. 24, 735--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Okano, F., Hoshino, H., and Yuyama, A. 1997. Real-time pickup method for a three-dimensional image based on integral photography. Applied Optics 36, 15981603.Google ScholarGoogle ScholarCross RefCross Ref
  32. Okano, F., Arai, J., Hoshino, H., and Yuyama, I. 1999. Three dimensional video system based on integral photography. Optical Engineering 38, 1072--1077.Google ScholarGoogle ScholarCross RefCross Ref
  33. Oppenheim, A. V., Schafer, R. W., and Buck, J. R. 1999. Discrete-Time Signal Processing. Prentice-Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Raskar, R., Agrawal, A., and Tumblin, J. 2006. Coded exposure photography: motion deblurring using fluttered shutter. ACM Trans. Graph. 25, 3, 795--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Richardson, W. 1972. Bayesian-based iterative method of image restoration. J. Opt. Soc. of Am. 62, 1, 55--59.Google ScholarGoogle ScholarCross RefCross Ref
  36. Skinner, G. K. 1988. X-Ray Imaging with Coded Masks. Scientific American 259 (Aug.), 84.Google ScholarGoogle ScholarCross RefCross Ref
  37. Sun, W., and Barbastathis, G. 2005. Rainbow volume holographic imaging. Opt. Lett. 30, 976--978.Google ScholarGoogle ScholarCross RefCross Ref
  38. Vaish, V., Wilburn, B., Joshi, N., and Levoy, M. 2004. Using plane + parallax for calibrating dense camera arrays. In Proc. Conf. Computer Vision and Pattern Recognition, 2--9.Google ScholarGoogle Scholar
  39. van der Gracht, J., Dowski, E., Taylor, M., and Deaver, D. 1996. Broadband behavior of an optical-digital focus-invariant system. Optics Letters 21, 13 (July), 919--921.Google ScholarGoogle ScholarCross RefCross Ref
  40. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., and Tumblin, J. 2007. Non-refractive modulators for coding and capturing scene appearance. Tech. Rep. UMIACS-TR-2007-21, Univ. of Maryland.Google ScholarGoogle Scholar
  41. Wang, S., and Heidrich, W. 2004. The design of an inexpensive very high resolution scan camera system. Eurographics 23, 441--450.Google ScholarGoogle ScholarCross RefCross Ref
  42. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, M., and Levoy, M. 2005. High performance imaging using large camera arrays. ACM Trans. Graph. 24, 3, 765--776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yang, J. C. 2000. A Light Field Camera For Image Based Rendering. Master's thesis, Massachussettes Institute of Technology.Google ScholarGoogle Scholar
  44. Zomet, A., and Nayar, S. 2006. Lensless imaging with a controllable aperture. In Proc. Conf. Computer Vision and Pattern Recognition, 339--346. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 26, Issue 3
          July 2007
          976 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1276377
          Issue’s Table of Contents

          Copyright © 2007 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 29 July 2007
          Published in tog Volume 26, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader