skip to main content
article

SIMBICON: simple biped locomotion control

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

Physics-based simulation and control of biped locomotion is difficult because bipeds are unstable, underactuated, high-dimensional dynamical systems. We develop a simple control strategy that can be used to generate a large variety of gaits and styles in real-time, including walking in all directions (forwards, backwards, sideways, turning), running, skipping, and hopping. Controllers can be authored using a small number of parameters, or their construction can be informed by motion capture data. The controllers are applied to 2D and 3D physically-simulated character models. Their robustness is demonstrated with respect to pushes in all directions, unexpected steps and slopes, and unexpected variations in kinematic and dynamic parameters. Direct transitions between controllers are demonstrated as well as parameterized control of changes in direction and speed. Feedback-error learning is applied to learn predictive torque models, which allows for the low-gain control that typifies many natural motions as well as producing smoother simulated motion.

Skip Supplemental Material Section

Supplemental Material

pps104.mp4

mp4

75.1 MB

References

  1. Auslander, J., Fukunaga, A., Partovi, H., Christensen, J., Hsu, L., Reiss, P., Shuman, A., Marks, J., and Ngo, J. T. 1995. Further experience with controller-based automatic motion synthesis for articulated figures. ACM Trans. on Graphics 14, 4, 311--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Dasgupta, A., and Nakamura, Y. 1999. Making feasible walking motion of humanoid robots from human motion capture data. In Robotics and Automation, vol. 2, 1044--1049.Google ScholarGoogle ScholarCross RefCross Ref
  3. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. Proc. ACM SIGGRAPH, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Hodgins, J. K., and Pollard, N. S. 1997. Adapting simulated behaviors for new characters. In Proceedings of SIGGRAPH '97, 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In SIGGRAPH '95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hodgins, J. K. 1991. Biped gait transitions. In Proceedings of the IEEE International Conference on Robotics and Automation.Google ScholarGoogle ScholarCross RefCross Ref
  7. Honda Motor Co., L., 2006. Studies of leg/foot functions of the robot, http://world.honda.com/asimo/p3/technology/.Google ScholarGoogle Scholar
  8. Kaneko, K., Kanehiro, F., Kajita, S., Yokoyama, K., Akachi, K., Kawasaki, T., Ota, S., and Isozumi, T. 2002. Design of prototype humanoid robotics platform for HRP. IEEE/RSJ Intl. Conf. on Intell. Robots and Systems.Google ScholarGoogle Scholar
  9. Kawato, M., Furukawa, K., and Suzuki, R. 1987. A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics 57, 3, 169--185.Google ScholarGoogle ScholarCross RefCross Ref
  10. Kim, J., Park, I., and Oh, J. 2006. Experimental realization of dynamic walking of the biped humanoid robot KHR-2 using zero moment point feedback and inertial measurement. Advanced Robotics 20, 6, 707--736.Google ScholarGoogle ScholarCross RefCross Ref
  11. Koditschek, D., and Buhler, M. 1991. Analysis of a Simplified Hopping Robot. Intl J. of Robotics Research 10, 6, 587. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kudoh, S., Komura, T., and Ikeuchi, K. 2006. Stepping motion for a humanlike character to maintain balance against large perturbations. In Proc. of Intl Conf. on Robotics and Automation, 2661--2666.Google ScholarGoogle Scholar
  13. Kuo, A. 1999. Stabilization of Lateral Motion in Passive Dynamic Walking. Intl J. of Robotics Research 18, 9, 917.Google ScholarGoogle ScholarCross RefCross Ref
  14. Laszlo, J. F., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proceedings of ACM SIGGRAPH, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Miura, H., and Shimoyama, I. 1984. Dynamic Walk of a Biped. Intl J. of Robotics Research 3, 2, 60--74.Google ScholarGoogle ScholarCross RefCross Ref
  16. Morimoto, J., Cheng, G., Atkeson, C. G., and Zeglin, G. 2004. A simple reinforcement learning algorithm for biped walking. In Proc. IEEE Int'l Conf. on Robotics and Automation.Google ScholarGoogle Scholar
  17. Nakanishi, J., and Schaal, S. 2004. Feedback error learning and nonlinear adaptive control. Neural Networks 17, 1453--1465. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., and Kawato, M. 2003. Learning from demonstration and adaptation of biped locomotion with dynamical movement primitives. In Workshop on Robot Learning by Demonstration, IEEE Int'l Conf. Intelligent Robots and Systems.Google ScholarGoogle Scholar
  19. NaturalMotion, 2006. http://www.naturalmotion.com.Google ScholarGoogle Scholar
  20. ODE. Open dynamics engine. http://www.ode.org.Google ScholarGoogle Scholar
  21. Popovic, Z., and Witkin, A. 1999. Physically based motion transformation. In Proceedings of ACM SIGGRAPH, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. In Proc. SIGGRAPH '91, 349--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Raibert, M. H. 1986. Legged Robots That Balance. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sharon, D., and van de Panne, M. 2005. Synthesis of controllers for stylized planar bipedal walking. In International Conference on Robotics and Automation.Google ScholarGoogle Scholar
  25. Smith, R. 1998. Intelligent Motion Control with an Artificial Cerebellum. PhD thesis, University of Auckland.Google ScholarGoogle Scholar
  26. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. on Graphics (Proc. ACM SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Taga, G., Yamaguchi, Y., and Shimizu, H. 1991. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics 65, 147--159.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Takahashi, C. D., Scheidt, R. A., and Reinkensmeyer, D. J. 2001. Impedance Control and Internal Model Formation When Reaching in a Randomly Varying Dynamical Environment. J. Neurophysiology 86 (Aug).Google ScholarGoogle Scholar
  29. Tedrake, R., Zhang, T. W., and Seung, H. S. 2004. Stochastic policy gradient reinforcement learning on a simple 3d biped. In IEEE Intl Conf. on Intelligent Robots and Systems.Google ScholarGoogle Scholar
  30. Vakakis, A., and Burdick, J. 1990. Chaotic motions in the dynamics of a hopping robot. Proc. IEEE Intl Conf on Robotics and Automation, 1464--1469.Google ScholarGoogle Scholar
  31. van de Panne, M., and Fiume, E. 1993. Sensor-actuator networks. In Proceedings of ACM SIGGRAPH, 335--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. van de Panne, M., Kim, R., and Fiume, E. 1994. Virtual wind-up toys for animation. In Graphics Interface, 208--215.Google ScholarGoogle Scholar
  33. Vukobratovic, M., and Juricic, D. 1969. Contribution to the synthesis of biped gait. In IEEE Transactions on Biomedical Engineering, vol. 16. 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  34. Wooten, W. L. 1998. Simulation of leaping, tumbling, landing, and balancing humans. PhD thesis, Georgia Institute of Technology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wrotek, P., Jenkins, O. C., and McGuire, M. 2006. Dynamo: dynamic, data-driven character control with adjustable balance. In sandbox '06: Proc. of the 2006 ACM SIGGRAPH Symposium on Videogames, 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yin, K., Cline, M. B., and Pai, D. K. 2003. Motion perturbation based on simple neuromotor control models. In Proceedings of Pacific Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zordan, V. B., and Hodgins, J. K. 2002. Motion capture-driven simulations that hit and react. In Proc. ACM SIGGRAPH/EG Symp. on Computer animation, 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zordan, V., Majkowska, A., Chiu, B., and Fast, M. 2005. Dynamic response for motion capture animation. Proc. ACM SIGGRAPH 2005 24, 3, 697--701. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. SIMBICON: simple biped locomotion control

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in

                Full Access

                • Published in

                  cover image ACM Transactions on Graphics
                  ACM Transactions on Graphics  Volume 26, Issue 3
                  July 2007
                  976 pages
                  ISSN:0730-0301
                  EISSN:1557-7368
                  DOI:10.1145/1276377
                  Issue’s Table of Contents

                  Copyright © 2007 ACM

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 29 July 2007
                  Published in tog Volume 26, Issue 3

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • article

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader