skip to main content
10.1145/1376616.1376686acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

MCDB: a monte carlo approach to managing uncertain data

Published:09 June 2008Publication History

ABSTRACT

To deal with data uncertainty, existing probabilistic database systems augment tuples with attribute-level or tuple-level probability values, which are loaded into the database along with the data itself. This approach can severely limit the system's ability to gracefully handle complex or unforeseen types of uncertainty, and does not permit the uncertainty model to be dynamically parameterized according to the current state of the database. We introduce MCDB, a system for managing uncertain data that is based on a Monte Carlo approach. MCDB represents uncertainty via "VG functions," which are used to pseudorandomly generate realized values for uncertain attributes. VG functions can be parameterized on the results of SQL queries over "parameter tables" that are stored in the database, facilitating what-if analyses. By storing parameters, and not probabilities, and by estimating, rather than exactly computing, the probability distribution over possible query answers, MCDB avoids many of the limitations of prior systems. For example, MCDB can easily handle arbitrary joint probability distributions over discrete or continuous attributes, arbitrarily complex SQL queries, and arbitrary functionals of the query-result distribution such as means, variances, and quantiles. To achieve good performance, MCDB uses novel query processing techniques, executing a query plan exactly once, but over "tuple bundles" instead of ordinary tuples. Experiments indicate that our enhanced functionality can be obtained with acceptable overheads relative to traditional systems.

References

  1. P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar, T. Sugihara, and J. Widom. Trio: A system for data, uncertainty, and lineage. In VLDB, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases: A probabilistic approach. In ICDE, page 30, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. L. Antova, C. Koch, and D. Olteanu. 10106 worlds and beyond: Efficient representation and processing of incomplete information. In ICDE, pages 606--615, 2007.Google ScholarGoogle Scholar
  4. L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing incomplete information with probabilistic world-set decompositions. In ICDE, pages 1479--1480, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  5. B. Biller and B. L. Nelson. Modeling and generating multivariate time-series input processes using a vector autoregressive technique. ACM Trans. Modeling Comput. Simulation, 13(3):211--237, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Burdick, A. Doan, R. Ramakrishnan, and S. Vaithyanathan. OLAP over imprecise data with domain constraints. In VLDB, pages 39--50, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluation of probabilistic queries over imprecise data in constantly-evolving environments. Inf. Syst., 32(1):104--130, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A database system for managing constantly-evolving data. In VLDB, pages 1271--1274, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter, and Y. Xia. Efficient join processing over uncertain data. In CIKM, pages 738--747, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong. Approximate data collection in sensor networks using probabilistic models. In ICDE, page 48, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. VLDB J., 16(4):523--544, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Deshpande and S. Madden. MauveDB: supporting model-based user views in database systems. In SIGMOD, pages 73--84, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. L. Devroye. Non-Uniform Random Variate Generation. Springer, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  14. L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  15. G. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer, 1996.Google ScholarGoogle Scholar
  16. N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Trans. Inf. Syst., 15(1):32--66, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. E. Gentle. Random Number Generation and Monte Carlo Methods. Springer, second edition, 2003.Google ScholarGoogle Scholar
  18. L. Getoor and B. Taskar, editors. Introduction to Statistical Relational Learning. MIT Press, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. Gupta and S. Sarawagi. Creating probabilistic databases from information extraction models. In VLDB, pages 965--976, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In SIGMOD, pages 171--182, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. G. Henderson and B. L. Nelson, editors. Simulation. North-Holland, 2006.Google ScholarGoogle Scholar
  22. C. M. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate query processing with the DBO engine. In SIGMOD, pages 725--736, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. B. Kimelfeld and Y. Sagiv. Matching twigs in probabilistic XML. In VLDB, pages 27--38, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Kimelfeld and Y. Sagiv. Maximally joining probabilistic data. In PODS, pages 303--312, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. Murthy and J. Widom. Making aggregation work in uncertain and probabilistic databases. In Proc. 1st Int. VLDB Work. Mgmt. Uncertain Data (MUD), pages 76--90, 2007.Google ScholarGoogle Scholar
  26. A. Nadas. An extension of a theorem by Chow and Robbins on sequential confidence intervals for the mean. Ann. Math. Statist., 40(2):667--671, 1969.Google ScholarGoogle ScholarCross RefCross Ref
  27. R. B. Nelsen. An Introduction to Copulas. Springer, second edition, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. O'Hagan and J. J. Forster. Bayesian Inference. Volume 2B of Kendall's Advanced Theory of Statistics. Arnold, second edition, 2004.Google ScholarGoogle Scholar
  29. J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data. In VLDB, pages 15--26, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. Re, N. N. Dalvi, and D. Suciu. Query evaluation on probabilistic databases. IEEE Data Eng. Bull., 29(1):25--31, 2006.Google ScholarGoogle Scholar
  31. C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic data. In ICDE, pages 886--895, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  32. C. Re and D. Suciu. Materialized views in probabilistic databases for information exchange and query optimization. In VLDB, pages 51--62, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. Sen and A. Deshpande. Representing and querying correlated tuples in probabilistic databases. In ICDE, pages 596--605, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  34. R. J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley, 1980.Google ScholarGoogle Scholar
  35. S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. E. Hambrusch. Indexing uncertain categorical data. In ICDE, pages 616--625, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  36. J. Xie, J. Yang, Y. Chen, H. Wang, and P. Yu. A sampling-based approach to information recovery. In ICDE, 2008. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. MCDB: a monte carlo approach to managing uncertain data

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGMOD '08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data
      June 2008
      1396 pages
      ISBN:9781605581026
      DOI:10.1145/1376616

      Copyright © 2008 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 9 June 2008

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate785of4,003submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader