skip to main content
10.1145/1399504.1360662acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Discrete elastic rods

Published:01 August 2008Publication History

ABSTRACT

We present a discrete treatment of adapted framed curves, parallel transport, and holonomy, thus establishing the language for a discrete geometric model of thin flexible rods with arbitrary cross section and undeformed configuration. Our approach differs from existing simulation techniques in the graphics and mechanics literature both in the kinematic description---we represent the material frame by its angular deviation from the natural Bishop frame---as well as in the dynamical treatment---we treat the centerline as dynamic and the material frame as quasistatic. Additionally, we describe a manifold projection method for coupling rods to rigid-bodies and simultaneously enforcing rod inextensibility. The use of quasistatics and constraints provides an efficient treatment for stiff twisting and stretching modes; at the same time, we retain the dynamic bending of the centerline and accurately reproduce the coupling between bending and twisting modes. We validate the discrete rod model via quantitative buckling, stability, and coupled-mode experiments, and via qualitative knot-tying comparisons.

Skip Supplemental Material Section

Supplemental Material

a63-bergou.mov

mov

22.9 MB

References

  1. Audoly, B., and Pomeau, Y. 2008. Elasticity and geometry: from hair curls to the nonlinear response of shells. Oxford University Press. To appear.Google ScholarGoogle Scholar
  2. Audoly, B., Clauvelin, N., and Neukirch, S. 2007. Elastic knots. Physical Review Letters 99, 16, 164301.Google ScholarGoogle ScholarCross RefCross Ref
  3. Audoly, B., Clauvelin, N., and Neukirch, S. 2008. Instabilities of elastic knots under twist. In preparation.Google ScholarGoogle Scholar
  4. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. In ACM TOG, 1180--1187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bobenko, A. I., and Suris, Y. B. 1999. Discrete time lagrangian mechanics on lie groups, with an application to the lagrange top. Comm. in Mathematical Physics 204, 1, 147--188.Google ScholarGoogle ScholarCross RefCross Ref
  6. Brown, J., Latombe, J.-C., and Montgomery, K. 2004. Real-time knot-tying simulation. Vis. Comp. V20, 2, 165--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chang, J., Shepherd, D. X., and Zhang, J. J. 2007. Cosserat-beam-based dynamic response modelling. Computer Animation and Virtual Worlds 18, 4--5, 429--436. Google ScholarGoogle ScholarCross RefCross Ref
  8. Choe, B., Choi, M. G., and Ko, H.-S. 2005. Simulating complex hair with robust collision handling. In SCA '05, 153--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. de Vries, R. 2005. Evaluating changes of writhe in computer simulations of supercoiled DNA. J. Chem. Phys. 122, 064905.Google ScholarGoogle ScholarCross RefCross Ref
  10. Falk, R. S., and Xu, J.-M. 1995. Convergence of a second-order scheme for the nonlinear dynamical equations of elastic rods. SJNA 32, 4, 1185--1209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fuller, F. B. 1971. The writhing number of a space curve. PNAS 68, 4, 815--819.Google ScholarGoogle ScholarCross RefCross Ref
  12. Fuller, F. B. 1978. Decomposition of the linking number of a closed ribbon: a problem from molecular biology. PNAS 75, 8, 3557--3561.Google ScholarGoogle ScholarCross RefCross Ref
  13. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. In ACM TOG, 49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Goldstein, R. E., and Langer, S. A. 1995. Nonlinear dynamics of stiff polymers. Phys. Rev. Lett. 75, 6 (Aug), 1094--1097.Google ScholarGoogle ScholarCross RefCross Ref
  15. Goriely, A., and Tabor, M. 1998. Spontaneous helix hand reversal and tendril perversion in climbing plants. Physical Review Letters 80, 7 (Feb), 1564--1567.Google ScholarGoogle ScholarCross RefCross Ref
  16. Goriely, A. 2006. Twisted elastic rings and the rediscoveries of Michell's instability. Journal of Elasticity 84, 281--299.Google ScholarGoogle ScholarCross RefCross Ref
  17. Goyal, S., Perkins, N. C., and Lee, C. L. 2007. Non-linear dynamic intertwining of rods with self-contact. International Journal of Non-Linear Mechanics In Press, Corrected Proof.Google ScholarGoogle Scholar
  18. Grégoire, M., and Schömer, E. 2007. Interactive simulation of one-dimensional flexible parts. CAD 39, 8, 694--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Grinspun, E., Ed. 2006. Discrete differential geometry: an applied introduction. ACM SIGGRAPH 2006 Courses.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hadap, S., Cani, M.-P., Lin, M., Kim, T.-Y., Bertails, F., Marschner, S., Ward, K., and Kačić-Alesić, Z. 2007. Strands and hair: modeling, animation, and rendering. ACM SIGGRAPH 2007 Courses, 1--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hadap, S. 2006. Oriented strands: dynamics of stiff multi-body system. In SCA '06, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hairer, E., Lubich, C., and Wanner, G. 2006. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Series in Comp. Math. Springer.Google ScholarGoogle Scholar
  23. Hanson, A. J. 2006. Visualizing Quaternions. MK/Elsevier.Google ScholarGoogle Scholar
  24. Klapper, I. 1996. Biological applications of the dynamics of twisted elastic rods. J. Comp. Phys. 125, 2, 325--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lanczos, C. 1986. The Variational Principles of Mechanics, 4th ed. Dover.Google ScholarGoogle Scholar
  26. Langer, J., and Singer, D. A. 1996. Lagrangian aspects of the Kirchhoff elastic rod. SIAM Review 38, 4, 605--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lenoir, J., Cotin, S., Duriez, C., and Neumann, P. 2006. Interactive physically-based simulation of catheter and guidewire. Computer & Graphics 30, 3, 417--423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lin, C.-C., and Schwetlick, H. R. 2004. On the geometric flow of Kirchhoff elastic rods. SJAM 65, 2, 720--736.Google ScholarGoogle Scholar
  29. Maddocks, J. H., and Dichmann, D. J. 1994. Conservation laws in the dynamics of rods. Journal of elasticity 34, 83--96.Google ScholarGoogle ScholarCross RefCross Ref
  30. Maddocks, J. H. 1984. Stability of nonlinearly elastic rods. Archive for Rational Mechanics and Analysis 85, 4, 311--354.Google ScholarGoogle ScholarCross RefCross Ref
  31. Pai, D. K. 2002. STRANDS: interactive simulation of thin solids using Cosserat models. CGF 21, 3.Google ScholarGoogle ScholarCross RefCross Ref
  32. Phillips, J., Ladd, A., and Kavraki, L. 2002. Simulated knot tying. In Proceedings of ICRA 2002, vol. 1, 841--846.Google ScholarGoogle Scholar
  33. Press, W. H., Vetterling, W. T., Teukolsky, S. A., and Flannery, B. P. 2002. Numerical Recipes in C++: the art of scientific computing. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Rubin, M. B. 2000. Cosserat Theories: Shells, Rods and Points. Kluwer Academic Publishers.Google ScholarGoogle ScholarCross RefCross Ref
  35. Shabana, A. 2001. Computational Dynamics, 2nd ed. John Wiley & Sons, New York.Google ScholarGoogle Scholar
  36. Smith, R., 2008. Open dynamics engine. http://www.ode.org/.Google ScholarGoogle Scholar
  37. Sommerfeld, A. 1964. Mechanics of deformable bodies, vol. 2 of Lectures on theoretical physics. Academic Press.Google ScholarGoogle Scholar
  38. Spillmann, J., and Teschner, M. 2007. Corde: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In SCA '07, 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Spillmann, J., and Teschner, M. 2008. An adaptative contact model for the robust simulation of knots. CGF 27.Google ScholarGoogle Scholar
  40. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of SIGGRAPH '87, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Theetten, A., Grisoni, L., Andriot, C., and Barsky, B. 2006. Geometrically exact dynamic splines. Tech. rep., INRIA.Google ScholarGoogle Scholar
  42. van der Heijden, G. H. M., and Thompson, J. M. T. 2000. Helical and localised buckling in twisted rods: A unified analysis of the symmetric case. Nonlinear Dynamics 21, 1, 71--99.Google ScholarGoogle ScholarCross RefCross Ref
  43. van der Heijden, G. H. M., Neukirch, S., Goss, V. G. A., and Thompson, J. M. T. 2003. Instability and self-contact phenomena in the writhing of clamped rods. Int. J. Mech. Sci. 45, 161--196.Google ScholarGoogle ScholarCross RefCross Ref
  44. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: Styling, simulation, and rendering. IEEE TVCG 13, 2 (Mar./Apr.), 213--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yang, Y., Tobias, I., and Olson, W. K. 1993. Finite element analysis of DNA supercoiling. J. Chem. Phys. 98, 2, 1673--1686.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Discrete elastic rods

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGGRAPH '08: ACM SIGGRAPH 2008 papers
      August 2008
      887 pages
      ISBN:9781450301121
      DOI:10.1145/1399504

      Copyright © 2008 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 August 2008

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SIGGRAPH '08 Paper Acceptance Rate90of518submissions,17%Overall Acceptance Rate1,822of8,601submissions,21%

      Upcoming Conference

      SIGGRAPH '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader