skip to main content
10.1145/1401890.1401903acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Unsupervised feature selection for principal components analysis

Published:24 August 2008Publication History

ABSTRACT

Principal Components Analysis (PCA) is the predominant linear dimensionality reduction technique, and has been widely applied on datasets in all scientific domains. We consider, both theoretically and empirically, the topic of unsupervised feature selection for PCA, by leveraging algorithms for the so-called Column Subset Selection Problem (CSSP). In words, the CSSP seeks the "best" subset of exactly k columns from an m x n data matrix A, and has been extensively studied in the Numerical Linear Algebra community. We present a novel two-stage algorithm for the CSSP. From a theoretical perspective, for small to moderate values of k, this algorithm significantly improves upon the best previously-existing results [24, 12] for the CSSP. From an empirical perspective, we evaluate this algorithm as an unsupervised feature selection strategy in three application domains of modern statistical data analysis: finance, document-term data, and genetics. We pay particular attention to how this algorithm may be used to select representative or landmark features from an object-feature matrix in an unsupervised manner. In all three application domains, we are able to identify k landmark features, i.e., columns of the data matrix, that capture nearly the same amount of information as does the subspace that is spanned by the top k "eigenfeatures."

References

  1. A. d'Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G.Lanckriet. A Direct Formulation for Sparse PCA Using Semidefinite Programming. SIAM Review, 49(3), July 2007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Ben-Hur and I. Guyon. Detecting stable clusters using principal component analysis. Methods Mol Biol, 224:159--182, 2003.Google ScholarGoogle Scholar
  3. M.W. Berry, S.A. Pulatova, and G.W. Stewart. Computing sparse reduced-rank approximations to sparse matrices.ACM Trans on Math Soft, 31:252--269, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. H. Bischof and G. Qintana-Ortí. Algorithm 782: codes for rank-revealing QR factorizations of dense matrices. ACM Trans on Math Soft, 24:254--257, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C.H. Bischof and G. Quintana-Ortí. Computing rank-revealing QR factorizations of dense matrices. ACM Trans on Math Soft, 24(2):226--253, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. Boutsidis, M.W. Mahoney, and P. Drineas. Manuscript in preparation, 2008Google ScholarGoogle Scholar
  7. J. Cadima, J. O. Cerdeira, and M. Minhoto. Computational aspects of algorithms for variable selection in thecontext of principal components. Computational Statistics & Data Analysis, 47(2):225--236, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  8. T. F. Chan. Rank revealing QR factorizations. Linear Algebra Appl, 88/89:67--82, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  9. T.F. Chan and P.C. Hansen. Some applications of the rank revealing QR factorization. SIAM J Sci and Stat Comp, 13:727--741, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. T. F. Chan and P.C. Hansen. Low-rank revealing QR factorizations. Linear Algebra Appl, 1:33--44, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  11. S. Chandrasekaran and I. C. F. Ipsen. On rank-revealing factorizations. SIAM J Matrix Anal Appl, 15:592--622, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective clustering via volume sampling. SODA, 2006 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Devaney and A. Ram. Efficient feature selection in conceptual clustering. In ICML, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Subspace sampling and relative-error matrix approximation: Column-based methods, APPROX-RANDOM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix decompositions. http://arxiv.org/abs/0708.3696, 2007.Google ScholarGoogle Scholar
  16. J G. Dy and C E. Brodley. Feature selection for unsupervised learning. J. Mach. Learn. Res., 5:845--889, 2004. Google ScholarGoogle ScholarCross RefCross Ref
  17. R.D. Fierro, P.C. Hansen, and P. Hansen. UTV tools: Matlab templates for rank-revealing UTV decompositions. Numerical Algorithms, 20(2-3):165--194, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  18. L. V. Foster. Rank and null space calculations using matrix decomposition without column interchanges. Linear Algebra Appl, 74:47--71, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  19. L.V. Foster and Xinrong Liu. Comparison of rank revealing algorithms applied to matrices with welldefined numerical ranks. manuscript, 2006.Google ScholarGoogle Scholar
  20. A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank approximations, FOCS, 1998 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. E. Gabrilovich and S. Markovitch. Text categorization with many redundant features: using aggressive feature selection to make SVMs competitive with C4.5. ICML, 2004 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. H. Golub. Numerical methods for solving linear least squares problems. Numer Math, 7:206--216, 1965.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, 1989.Google ScholarGoogle Scholar
  24. M. Gu and S.C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J Sci Comp, 17:848--869, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Y. P. Hong and C. T. Pan. Rank-revealing QR factorizations and the singular value decomposition. Math Comp, 58:213--232, 1992.Google ScholarGoogle Scholar
  26. W. J. Krzanowski. Selection of variables to preserve multivariate data structure,using principal components. Applied Statistics,36(1):22--33, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  27. F.G. Kuruvilla and P.J. Park and S.L. Schreiber. Vector algebra in the analysis of genome-wide expression data. Genome Biology, 3, 2002.Google ScholarGoogle Scholar
  28. K. Z. Mao. Identifying critical variables of principal components forunsupervised feature selection. IEEE Transactions on Systems,Man, and Cybernetics, Part B, 35(2):339--344, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M.W. Mahoney, M. Maggioni, and P. Drineas. Tensor-CUR decompositions for tensor-based data, KDD, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Menozzi, A. Piazza, and L. Cavalli-Sforza. Synthetic maps of human gene frequencies in Europeans . Science, 201(4358):786--792, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  31. P. Mitra, C. A. Murthy, and S. K. Pal. Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell., 24(3):301--312,2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Open Directory Project. http://www.dmoz.org/Google ScholarGoogle Scholar
  33. C. T. Pan. On the existence and computation of rank-revealing LUfactorizations. Linear Algebra Appl, 316:199--222, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  34. C. T. Pan and P. T. P. Tang. Bounds on singular values revealed by QR factorizations. BIT Numerical Mathematics, 39:740--756, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  35. P. Paschou, E. Ziv, E.G. Burchard, S. Choudhry, W.R. Cintron, M.WMahoney, and P. Drineas. PCA-Correlated SNPs for Structure Identification in Worldwide Human Populations, PLoS Genetics,9(3), 2007.Google ScholarGoogle Scholar
  36. P. Paschou, M.W. Mahoney, A. Javed, J.R. Kidd, A.J. Pakstis, S.Gu, K.K. Kidd, and P. Drineas. Intra- and Inter-population genotype reconstruction from tagging SNPs, Genome Research, 17: 96--107, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  37. N.A. Rosenberg, L.M. Li, R. Ward, and J.K. Pritchard. Informativeness of genetic markers for inference of ancestry. Am J Hum Genet, 73(6):1402--1422, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  38. G.W. Stewart. Four algorithms for the efficientcomputation of truncated QR approximations to a sparse matrix. Num Math, 83:313--323, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  39. H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar. Ranking a random feature for variable and feature selection. J. Mach. Learn. Res., 3:1399--1414, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more: Compact matrix decomposition for large sparse graphs, SDM, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  41. The International HapMap Consortium. A haplotype map of the human genome. Nature, 437:1299--1320, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  42. L. Wolf and A. Shashua. Feature selection for unsupervised and supervised inference: Theemergence of sparsity in a weight-based approach. J. Mach.Learn. Res., 6:1855--1887, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Z. Zhao and H. Liu. Spectral feature selection for supervised and unsupervisedlearning. In ICML, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. http://finance.yahoo.com/Google ScholarGoogle Scholar

Index Terms

  1. Unsupervised feature selection for principal components analysis

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          KDD '08: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining
          August 2008
          1116 pages
          ISBN:9781605581934
          DOI:10.1145/1401890
          • General Chair:
          • Ying Li,
          • Program Chairs:
          • Bing Liu,
          • Sunita Sarawagi

          Copyright © 2008 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 24 August 2008

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          KDD '08 Paper Acceptance Rate118of593submissions,20%Overall Acceptance Rate1,133of8,635submissions,13%

          Upcoming Conference

          KDD '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader