skip to main content
research-article

Zigzag decoding: combating hidden terminals in wireless networks

Published:17 August 2008Publication History
Skip Abstract Section

Abstract

This paper presents ZigZag, an 802.11 receiver design that combats hidden terminals. ZigZag's core contribution is a new form of interference cancellation that exploits asynchrony across successive collisions. Specifically, 802.11 retransmissions, in the case of hidden terminals, cause successive collisions. These collisions have different interference-free stretches at their start, which ZigZag exploits to bootstrap its decoding.

ZigZag makes no changes to the 802.11 MAC and introduces no overhead when there are no collisions. But, when senders collide, ZigZag attains the same throughput as if the colliding packets were a priori scheduled in separate time slots. We build a prototype of ZigZag in GNU Radio. In a testbed of 14 USRP nodes, ZigZag reduces the average packet loss rate at hidden terminals from 72.6% to about 0.7%.

References

  1. Broadcom Wireless LAN Adapter User Guide.Google ScholarGoogle Scholar
  2. Reference Manual for the NETGEAR ProSafe 802.11g Wireless AP WG102.Google ScholarGoogle Scholar
  3. ISL3873: Wireless LAN Integrated Medium Access Controller with Baseband Processor, 2000.Google ScholarGoogle Scholar
  4. J. Andrews. Interference cancellation for cellular systems: A contemporary overview. IEEE Wireless Communications, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. V. Bharghavan, A. J. Demers, S. Shenker, and L. Zhang. MACAW: A Media Access Protocol for Wireless LAN's. In ACM SIGCOMM 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. G. Brennan. On the Maximal Signal-to-Noise Ratio Realizable from Several Noisy Signals. Proc. IRE, 43:1530, October 1955.Google ScholarGoogle Scholar
  7. P. Castoldi. Multiuser Detection in CDMA Mobile Terminals. Artech house Publishers, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Y.-C. Cheng, J. Bellardo, P. Benk, A. C. Snoeren, G. M. Voelker, and S. Savage. Jigsaw: solving the puzzle of enterprise 802.11 analysis. In SIGCOMM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. G. FSF. GNU Radio - GNU FSF Project.Google ScholarGoogle Scholar
  10. C. L. Fullmer and J. J. Garcia-Luna-Aceves. Solutions to Hidden Terminal Problems in Wireless Networks. In SIGCOMM, pages 39--49, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. R. G. Gallager. A Perspective on Multiaccess Channels. IEEE Transactions on Information Theory, IT-31(2), march 1985.Google ScholarGoogle Scholar
  12. S. Gollakota and D. Katabi. Zigzag decoding: Combating hidden terminals in wireless networks. Technical Report MIT-CSAIL-TR-2008-018, MIT, 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan. Understanding and Mitigating the Impact of RF Interference on 802.11 Networks. In SIGCOMM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Halperin, J. Ammer, T. Anderson, and D. Wetherall. Interference Cancellation: Better Receivers for a New Wireless MAC. In Hotnets, 2007.Google ScholarGoogle Scholar
  15. D. Halperin, T. Anderson, and D.Wetherall. Practical interference cancellation for wireless lans. In Proc. of ACM MOBICOM 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Hou, J. Smee, H. D. Pfister, and S. Tomasin. Implementing Interference Cancellation to Increase the EV-DO Rev A Reverse Link Capacity. IEEE Communication Magazine, February 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Inc. Universal software radio peripheral. http://ettus.com.Google ScholarGoogle Scholar
  18. G. Judd and P. Steenkiste. Using Emulation to Understand and Improve Wireless Networks and Applications. In NSDI, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. Karn. MACA-A New Channel Access Method for packet Radio. 9th Computer Networking Conf., 1990.Google ScholarGoogle Scholar
  20. S. Katti, S. Gollakota, and D. Katabi. Embracing Wireless Interference: Analog Network Coding. In ACM SIGCOMM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Khurana, A. Kahol, and A. P. Jayasumana. Effect of Hidden Terminals on the Performance of IEEE 802.11 MAC Protocol, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. E. A. Lee and D. G. Messerschmitt. Digital Communications. Boston: Kluwer Academic, 1988.Google ScholarGoogle Scholar
  23. J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi. An Experimental Study on the Capture Effect in 802.11a Networks, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. Meyr, M. Moeneclaey, and S. A. Fechtel. Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing. John Wiley & Sons, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Muqattash and M. Krunz. CDMA-Based MAC Protocol for Wireless Ad Hoc Networks. In ACM MOBIHOC, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. C. Ng, S. C. Liew, K. C. Sha, and W. T. To. Experimental Study of Hidden node Problem in IEEE 802.11 Wireless Networks. In Sigcomm Poster, 2005.Google ScholarGoogle Scholar
  27. C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Measurement-Based Models of Delivery and Interference. In SIGCOMM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. K. Tan. An Adaptive Orthogonal Frequency Division Multiplexing Baseband Modem for Wideband Wireless Channels. Master's thesis, MIT, 2006.Google ScholarGoogle Scholar
  29. D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cambridge University Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. Tse, P. Viswanath, and L. Zheng. Diversity-Multiplexing Tradeoff in Multiple Access Channels.Google ScholarGoogle Scholar
  31. IEEE Transaction on Information Theory, 2004.Google ScholarGoogle Scholar
  32. S. Verdu. Multiuser Detection. Cambridge University Press, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. J. Viterbi. Very Low Rate Convolutional Codes for Maximum Theoretical Performance of Spread-Spectrum Multiple-Access Channels. IEEE JSAC, May 1990.Google ScholarGoogle Scholar
  34. C. Ware, J. Judge, J. Chicharo, and E. Dutkiewicz. Unfairness and capture behaviour in 802.11 adhoc networks. volume 1, pages 159--163 vol.1, 2000.Google ScholarGoogle Scholar
  35. I. . WG. Wireless lan medium access control (mac) and physical layer (phy) specifications. Standard Specification,IEEE, 1999.Google ScholarGoogle Scholar
  36. G. Woo, P. Kheradpour, and D. Katabi. Beyond the Bits: Cooperative Packet Recovery Using PHY Information. In ACM MobiCom, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. K. Xu, M. Gerla, , and S. Bae. Effectiveness of RTS/CTS Handshake in IEEE 802.11 Based Ad Hoc Networks. In Ad Hoc Network Journal, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  38. J. Zhu, X. Guo, S. Roy, and K. Papagiannaki. CSMA Self-Adaptation based on Interference Differentiation. In IEEE Globecom, 2007.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Zigzag decoding: combating hidden terminals in wireless networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM SIGCOMM Computer Communication Review
      ACM SIGCOMM Computer Communication Review  Volume 38, Issue 4
      October 2008
      436 pages
      ISSN:0146-4833
      DOI:10.1145/1402946
      Issue’s Table of Contents
      • cover image ACM Conferences
        SIGCOMM '08: Proceedings of the ACM SIGCOMM 2008 conference on Data communication
        August 2008
        452 pages
        ISBN:9781605581750
        DOI:10.1145/1402958

      Copyright © 2008 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 August 2008

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader