skip to main content
research-article

A quasi-polynomial time approximation scheme for minimum weight triangulation

Published:19 May 2009Publication History
Skip Abstract Section

Abstract

The Minimum Weight Triangulation problem is to find a triangulation T* of minimum length for a given set of points P in the Euclidean plane. It was one of the few longstanding open problems from the famous list of twelve problems with unknown complexity status, published by Garey and Johnson [1979]. Very recently, the problem was shown to be NP-hard by Mulzer and Rote [2006]. In this article, we present a quasi-polynomial time approximation scheme for Minimum Weight Triangulation.

References

  1. Anagnostou, E., and Corneil, D. G. 1993. Polynomial-time instances of the minimum weight triangulation problem. Computat. Geom. Theory Applic. 3, 247--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arora, S. 1996. Polynomial time approximation schemes for Euclidean TSP and other geometric problems. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 2--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Arora, S. 1998. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45, 5, 753--782. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Arora, S. 2003. Approximation schemes for NP-hard geometric optimization problems: A survey. Math. Prog. Ser. B 97, 43--69.Google ScholarGoogle ScholarCross RefCross Ref
  5. Arora, S., and Chang, K. 2004. Approximation schemes for degree-restricted MST and red-blue separation problems. Algorithmica 40, 3, 189--210.Google ScholarGoogle ScholarCross RefCross Ref
  6. Arora, S., Raghavan, P., and Rao, S. 1998. Approximation schemes for Euclidean k-medians and related problems. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing. ACM, New York, 106--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Belleville, P., Keil, J. M., McAllister, M., and Snoeyink, J. 1996. On computing edges that are in all minimum-weight triangulations. In Proceedings of the 12th Annual Symposium on Computational Geometry. V7--V8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bern, M., and Eppstein, D. 1997. Approximation algorithms for geometric problems. In Approximation Algorithms for NP-hard Problems, D. Hochbaum, Ed. PWS Publishing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cheng, S.-W., and Xu, Y.-F. 1996. Approaching the largest beta-skeleton within a minimum weight triangulation. In Proceedings of the 12th Annual Symposium on Computational Geometry. 196--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Das, G., and Joseph, D. 1989. Which triangulations approximate the complete graph?. In Proceedings of the International Symposium on Optimal Algorithms, 168--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dickerson, M., Keil, J. M., and Montague, M. H. 1997. A large subgraph of the minimum weight triangulation. Disc. Computat. Geom. 18, 3, 289--304.Google ScholarGoogle ScholarCross RefCross Ref
  12. Drysdale, R. L., McElfresh, S. A., and Snoeyink, J. 2001. On exclusion regions for optimal triangulations. Disc. Appl. Math. 109, 1-2, 49--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Düppe, R. D., and Gottschalk, H. J. 1970. Automatische Interpolation von Isolinien bei willkürlichen Stützpunken. Allgemeine Vermessungs-Nachrichten 77, 423--426.Google ScholarGoogle Scholar
  14. Edelsbrunner, H., and Tan, T. S. 1993. A quadratic time algorithm for the minmax length triangulation. SIAM J. Comput. 22, 3, 527--551. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Edelsbrunner, H., Tan, T. S., and Waupotitsch, R. 1992. An O(n2 log n) time algorithm for the minmax angle triangulation. SIAM J. Sci. Comput. 13, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Eppstein, D. 1994. Approximating the minimum weight Steiner triangulation. Disc. Comput. Geom. 11, 163--191.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Garey, M. R., and Johnson, D. S. 1979. Computers and Intractability---A Guide to the Theory of NP-Completness. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Gilbert, P. 1979. New results on planar triangulations. M.S. dissertation, University of Illinois.Google ScholarGoogle Scholar
  19. Grantson, M., Borgelt, C., and Levcopoulos, C. 2005. Minimum weight triangulation by cutting out triangles. In Proceeding of the 16th Annual International Symposium on Algorithms and Computation. 984--994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Gudmundsson, J., and Levcopoulos, C. 2007. Minimum weight pseudo-triangulations. Computat. at Geom. Theory Appl. 38, 139--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hoffmann, M., and Okamoto, Y. 2004. The minimum weight triangulation problem with few inner points. In Proceedings of the 1st Internation Workshop on Parameterized and Exact Computation. 200--212.Google ScholarGoogle Scholar
  22. Keil, J. M. 1994. Computing a subgraph of the minimum weight triangulation. Computat. Geom. Theory Applic. 4, 18--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Klincsek, G. 1980. Minimal triangulations of polygonal domains. Ann. Disc. Math. 9, 121--123.Google ScholarGoogle ScholarCross RefCross Ref
  24. Levcopoulos, C., and Krznaric, D. 1996. Quasi-greedy triangulations approximating the minimum weight triangulation. In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 392--401. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Levcopoulos, C., and Krznaric, D. 1998. Quasi-greedy triangulations approximating the minimum weight triangulation. J. Algorithms 27, 303--338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lloyd, E. 1977. On triangulations of a set of points in the plane. In Proceedings of the 18th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 228--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mitchell, J. S. B. 1996. Guillotine subdivisions approximate polygonal subdivisions: A simple new method for the geometric k-MST problem. In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 402--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Mitchell, J. S. B., and O'Rourke, J. 2001. Computational Geometry Column 42. SIGACT News 32, 3, 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mulzer, W., and Rote, G. 2006. Minimum weight triangulation is NP-hard. In Proceedings of the 22nd Annual ACM Symposium on Computational Geometry, ACM, New York, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Plaisted, D. A., and Hong, J. 1987. A heuristic triangulation algorithm. Journal of Algorithms 8, 465--437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Shamos, M. I., and Hoey, D. J. 1975. Closest-point problems. In Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 151--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yang, B. T., Xu, Y. F., and You, Z. Y. 1994. A chain decomposition algorithm for the proof of a property on minimum weight triangulations. In Proceedings of the 5th International Symposium on Algorithms and Computation. 423--427. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A quasi-polynomial time approximation scheme for minimum weight triangulation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 56, Issue 3
        May 2009
        328 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/1516512
        Issue’s Table of Contents

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 May 2009
        • Accepted: 1 March 2008
        • Revised: 1 February 2008
        • Received: 1 July 2006
        Published in jacm Volume 56, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader