skip to main content
10.1145/1526709.1526756acmconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Visual diversification of image search results

Published:20 April 2009Publication History

ABSTRACT

Due to the reliance on the textual information associated with an image, image search engines on the Web lack the discriminative power to deliver visually diverse search results. The textual descriptions are key to retrieve relevant results for a given user query, but at the same time provide little information about the rich image content.

In this paper we investigate three methods for visual diversification of image search results. The methods deploy lightweight clustering techniques in combination with a dynamic weighting function of the visual features, to best capture the discriminative aspects of the resulting set of images that is retrieved. A representative image is selected from each cluster, which together form a diverse result set.

Based on a performance evaluation we find that the outcome of the methods closely resembles human perception of diversity, which was established in an extensive clustering experiment carried out by human assessors.

References

  1. A. Bhattacharyya. On a measure of divergence between two statistical populations defined by probability distribution. Bul l. Calcutta Math. Soc., 35:99--109, 1493.Google ScholarGoogle Scholar
  2. D. Cai, X. He, Z. Li, W.-Y. Ma, and J.-R. Wen. Hierarchical clustering of www image search results using visual, textual and link information. In MULTIMEDIA '04: Proceedings of the 12th annual ACM international conference on Multimedia, pages 952--959, New York, NY, USA, 2004. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. A. Chatzichristo's and Y. S. Boutalis. Cedd: Color and edge directivity descriptor: A compact descriptor for image indexing and retrieval. In A. Gasteratos, M. Vincze, and J. K. Tsotsos, editors, ICVS, volume 5008 of Lecture Notes in Computer Science, pages 312--322. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval: Ideas, influences, and trends of the new age. ACM Computer Surveys, 40(2):1--60, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. E. Fowlkes and C. Mallows. A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78(383):553--569, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. Goldberger, S. Gordon, and H. Greenspan. Unsupervised image-set clustering using an information theoretic framework. IEEE Transactions on Image Processing, 15(2):449--458, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Huang, S. R. Kumar, and R. Zabih. An automatic hierarchical image classification scheme. In MULTIMEDIA '98: Proceedings of the sixth ACM international conference on Multimedia, pages 219--228, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Y. Liu, D. Zhang, G. Lu, and W.--Y. Ma. A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 40(1):262--282, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. MeilØa. Comparing clusterings : an information based distance. Journal of Multivariate Analysis, 98(5):873--895, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P.-A. Moellic, J.-E. Haugeard, and G. Pitel. Image clustering based on a shared nearest neighbors approach for tagged collections. In CIVR '08: Proceedings of the 2008 international conference on Content-based image and video retrieval, pages 269--278, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. P. Salembier and T. Sikora. Introduction to MPEG-7: Multimedia Content Description Interface. John Wiley & Sons, Inc., New York, NY, USA, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intel ligence, 22(12):1349--1380, Dec 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. K. Song, Y. Tian, W. Gao, and T. Huang. Diversifying the image retrieval results. In MULTIMEDIA '06: Proceedings of the 14th annual ACM international conference on Multimedia, pages 707--710, New York, NY, USA, 2006. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. H. Tamura, S. Mori, and T. Yamawaki. Texture features corresponding to visual perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6), 1978.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. van Zwol. Multimedia strategies for b3-sdr, based on principle component analysis. In Advances in XML Information Retrieval, Lecture Notes in Computer Science. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. van Zwol, V. Murdock, L. Garcia, and G. Ramirez. Diversifying image search with user generated content. In Proceedings of the International ACM Conference on Multimedia Information Retrieval, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Wallace. Comment. Journal of the American Statistical Association, 78(383):569--576, 1983.Google ScholarGoogle Scholar
  18. S. Wang, F. Jing, J. He, Q. Du, and L. Zhang. Igroup: presenting web image search results in semantic clusters. In CHI '07: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 587--596, New York, NY, USA, 2007. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. K. Weinberger, M. Slaney, and R. van Zwol. Resolving tag ambiguity. In Proceedings of the 16th International ACM Conference on Multimedia (MM 2008), Vancouver, Canada, November 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Wilkins, P. Ferguson, and A. F. Smeaton. Using score distributions for query-time fusion in multimediaretrieval. In MIR '06: Proceedings of Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. the 8th ACM international workshop on Multimedia information retrieval, pages 51--60, New York, NY, USA, 2006. ACM.Google ScholarGoogle Scholar
  22. S. A. Yahia, P. Bhat, J. Shanmugasundaram, U. Srivastava, and E. Vee. Efficient online computation of diverse query results. In Proceedings of VLDB, 2007.Google ScholarGoogle Scholar
  23. B. Zhang, H. Li, Y. Liu, L. Ji, W. Xi, W. Fan, Z. Chen, and W.-Y. Ma. Improving web search results using affinity graph. In SIGIR '05: Proceedings of the 28th annual international ACM SIGIR conference on Research Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. and development in information retrieval, pages 504--511, New York, NY, USA, 2005. ACM.Google ScholarGoogle Scholar
  25. C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through topic diversification. In WWW '05: Proceedings of the 14th international conference on World Wide Web, pages 22--32, New York, NY, USA, 2005. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Visual diversification of image search results

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          WWW '09: Proceedings of the 18th international conference on World wide web
          April 2009
          1280 pages
          ISBN:9781605584874
          DOI:10.1145/1526709

          Copyright © 2009 IW3C2 org

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 April 2009

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,899of8,196submissions,23%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader