skip to main content
research-article

iWIRES: an analyze-and-edit approach to shape manipulation

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

Man-made objects are largely dominated by a few typical features that carry special characteristics and engineered meanings. State-of-the-art deformation tools fall short at preserving such characteristic features and global structure. We introduce iWIRES, a novel approach based on the argument that man-made models can be distilled using a few special 1D wires and their mutual relations. We hypothesize that maintaining the properties of such a small number of wires allows preserving the defining characteristics of the entire object. We introduce an analyze-and-edit approach, where prior to editing, we perform a light-weight analysis of the input shape to extract a descriptive set of wires. Analyzing the individual and mutual properties of the wires, and augmenting them with geometric attributes makes them intelligent and ready to be manipulated. Editing the object by modifying the intelligent wires leads to a powerful editing framework that retains the original design intent and object characteristics. We show numerous results of manipulation of man-made shapes using our editing technique.

Skip Supplemental Material Section

Supplemental Material

tps081_09.mp4

mp4

86.8 MB

References

  1. Angelidis, A., Cani, M.-P., Wyvill, G., and King, S. 2004. Swirling-sweepers: Constant-volume modeling. In Proc. of Pacific Graphics, 10--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Attene, M., Robbiano, F., Spagnuolo, M., and Falcidieno, B. 2007. Semantic annotation of 3D surface meshes based on feature characterization. Lecture Notes in Computer Science 4816, 126--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Au, O. K.-C., Fu, H., Tai, C.-L., and Cohen-Or, D. 2007. Handle-aware isolines for scalable shape editing. ACM Trans. Graph. 26, 3, 83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Benkö, P., Martin, R. R., and Várady, T. 2001. Algorithms for reverse engineering boundary representation models. Computer Aided Design 33, 11, 839--851.Google ScholarGoogle ScholarCross RefCross Ref
  5. Botsch, M., and Kobbelt, L. 2003. Multiresolution surface representation based on displacement volumes. In Proc. of Eurographics, 483--491.Google ScholarGoogle Scholar
  6. Botsch, M., and Kobbelt, L. 2005. Real-time shape editing using radial basis functions. In Proc. of Eurographics, 611--621.Google ScholarGoogle Scholar
  7. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. on Visualization and Computer Graphics 14, 1, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. PriMo: Coupled prisms for intuitive surface modeling. In Proc. of Sym. on Geometry Processing, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. In Proc. of Eurographics, 339--347.Google ScholarGoogle Scholar
  10. Cabral, M., Lefebvre, S., Dachsbacher, C., and Drettakis, G. 2009. Structure preserving reshape for textured architectural scenes. In Proc. of Eurographics, 469--480.Google ScholarGoogle Scholar
  11. Coleman, T., and Li, Y. 1996. An interior, trust region approach for nonlinear minimization subject to bounds. SIAM Journal on Optimization 6, 418--445.Google ScholarGoogle ScholarCross RefCross Ref
  12. Coquillart, S. 1990. Extended free-form deformation: A sculpturing tool for 3D geometric modeling. In Proc. of ACM SIGGRAPH, 187--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. ACM Trans. Graph. 23, 3, 652--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3, 1126--1134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, #71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3, 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kraevoy, V., Sheffer, A., Cohen-Or, D., and Shamir, A. 2008. Non-homogeneous resizing of complex models. ACM Trans. Graph. 27, 5, #111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, Y., and Lee, S. 2002. Geometric snakes for triangular meshes. In Proc. of Eurographics, 229--238.Google ScholarGoogle Scholar
  19. Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24, 3, 479--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lipman, Y., Cohen-Or, D., Gal, R., and Levin, D. 2007. Volume and shape preservation via moving frame manipulation. ACM Trans. Graph. 26, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Masuda, H., and Ogawa, K. 2007. Application of interactive deformation to assembled mesh models for CAE analysis. In ASME Int. Design Engineering Technical Conferences.Google ScholarGoogle Scholar
  23. Masuda, H., Yoshioka, Y., and Furukawa, Y. 2007. Preserving form features in interactive mesh deformation. Computer Aided Design 39, 5, 361--368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Milliron, T., Jensen, R. J., Barzel, R., and Finkelstein, A. 2002. A framework for geometric warps and deformations. ACM Trans. Graph. 21, 1, 20--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mitra, N. J., Guibas, L., and Pauly, M. 2006. Partial and approximate symmetry detection for 3D geometry. ACM Trans. Graph. 25, 3, 560--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Nealen, A., Igarashi, T., Sorkine, O., and Alexa, M. 2007. FiberMesh: Designing freeform surfaces with 3D curves. ACM Trans. Graph. 26, 3, 41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ohtake, Y., Belyaev, A., and Seidel, H.-P. 2004. Ridgevalley lines on meshes via implicit surface fitting. ACM Trans. Graph. 23, 3, 609--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., and Salesin, D. 2008. Diffusion curves: a vector representation for smooth-shaded images. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. 2008. Discovering structural regularity in 3D geometry. ACM Trans. Graph. 27, 3, #43, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Popa, T., Julius, D., and Sheffer, A. 2007. Interactive and linear material aware deformations. Proc. of Shape Modeling International 13, 1, 73--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In Proc. of ACM SIGGRAPH, 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2007. Mesh puppetry: cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Singh, K., and Fiume, E. 1998. Wires: a geometric deformation technique. In Proc. of ACM SIGGRAPH, 405--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. of Sym. on Geometry Processing, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proc. of Sym. on Geometry Processing, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. von Funck, W., Theisel, H., and Seidel, H.-P. 2006. Vector field based shape deformations. ACM Trans. Graph. 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Large mesh deformation using the volumetric graph Laplacian. ACM Trans. Graph. 24, 3, 496--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zimmermann, J., Nealen, A., and Alexa, M. 2007. SilSketch: automated sketch-based editing of surface meshes. In Proc. of Sketch-based Interfaces and Modeling, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. iWIRES: an analyze-and-edit approach to shape manipulation

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 28, Issue 3
                August 2009
                750 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/1531326
                Issue’s Table of Contents

                Copyright © 2009 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 27 July 2009
                Published in tog Volume 28, Issue 3

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader