skip to main content
research-article

An O(n log n) approximation scheme for Steiner tree in planar graphs

Published:04 July 2009Publication History
Skip Abstract Section

Abstract

We give a Polynomial-Time Approximation Scheme (PTAS) for the Steiner tree problem in planar graphs. The running time is O(n log n).

References

  1. Arora, S. 1998. Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. J. ACM 45, 5, 753--782. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arora, S., Grigni, M., Karger, D., Klein, P., and Woloszyn, A. 1998. A polynomial-time approximation scheme for weighted planar graph TSP. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms. 33--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baker, B. 1994. Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 1, 153--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Berman, P., and Ramaiyer, V. 1994. Improved approximations for the Steiner tree problem. J. Algor. 17, 381--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bern, M. 1990. Faster exact algorithms for Steiner trees in planar networks. Netw. 20, 109--120.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bern, M., and Bienstock, D. 1991. Polynomially solvable special cases of the Steiner problem in planar networks. Math. Oper. Res. 33, 405--418.Google ScholarGoogle Scholar
  7. Bern, M., and Plassmann, P. 1989. The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32, 171--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Borradaile, G., Kenyon-Mathieu, C., and Klein, P. 2007a. A polynomial-time approximation scheme for Steiner tree in planar graphs. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. 1285--1294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Borradaile, G., and Klein, P. 2008. The two-edge connectivity survivable network problem in planar graphs. In Proceedings of the 35th International Colloquium on Automata, Languages and Programming. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Borradaile, G., Klein, P., and Mathieu, C. 2007b. Steiner tree in planar graphs: An O(n log n) approximation scheme with singly exponential dependence on epsilon. In Proceedings of the 10th International Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 4619. Springer, 275--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Catalan, E. 1838. Note sur un problème de combinaisons. J. Mathématiques Pures et Appl. 3, 111 --112.Google ScholarGoogle Scholar
  12. Demaine, E. D., and Hajiaghayi, M. 2005. Bidimensionality: New connections between FPT algorithms and PTASs. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, 367--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Erickson, R., Monma, C., and Veinott, A. 1987. Send-and-split method for minimum-concave-cost network flows. Math. Oper. Res. 12, 634--664. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Garey, M., and Johnson, D. S. 1977. The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 4, 826--834.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Henzinger, M. R., Klein, P. N., Rao, S., and Subramanian, S. 1997. Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55, 1, 3--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hopcroft, J., and Tarjan, R. 1974. Efficient planarity testing. J. ACM 21, 4, 549--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hougardy, S., and Prömel, H. J. 1999. A 1.598 approximation algorithm for the Steiner problem in graphs. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, 448--453. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Karp, R. 1975. On the computational complexity of combinatorial problems. Netw. 5, 45--68.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Karpinski, M., and Zelikovsky, A. 1997. New approximation algorithms for the Steiner tree problem. J. Combin. Optimiz. 1, 47--65.Google ScholarGoogle ScholarCross RefCross Ref
  20. Klein, P. A linear-time approximation scheme for planar TSP. SIAM J. Comput. to appear.Google ScholarGoogle Scholar
  21. Klein, P. 2006. A subset spanner for planar graphs, with application to subset TSP. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 749--756. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Klein, P. N. 2005a. A linear-time approximation scheme for planar weighted TSP. In Proceedings of the 46th Annual Symposium on Foundations of Computer Science, 647--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Klein, P. N. 2005b. Multiple-source shortest paths in planar graphs. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, 146--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kou, L., Markowsky, G., and Berman, L. 1981. A fast algorithm for Steiner trees. Acta Inf. 15, 141--145.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mehlhorn, K. 1988. A faster approximation algorithm for the Steiner problem in graphs. Inf. Process. Lett. 27, 3, 125--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mitchell, J. 1999. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28, 4, 1298--1309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Prömel, H., and Steger, A. 1997. RNC approximation algorithms for the Steiner problem. In Proceedings of the 14th International Symposium on Theoretical Aspects of Computer Science, 559--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Provan, J. 1988a. An approximation scheme for finding Steiner trees with obstacles. SIAM J. Comput. 17, 920--934, 920--934. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Provan, J. 1988b. Convexity and the Steiner tree problem. Netw. 18, 55--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rao, S., and Smith, W. 1998. Approximating geometrical graphs via “spanners” and “banyans”. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing, 540--550. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Robins, G., and Zelikovsky, A. 2005. Tighter bounds for graph Steiner tree approximation. SIAM J. Discrete Math. 19, 1, 122--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sommerville, D. 1929. An Introduction to the Geometry of n Dimensions. London.Google ScholarGoogle Scholar
  33. Takahashi, H., and Matsuyama, A. 1980. An approximate solution for the Steiner problem in graphs. Math. Japonicae 24, 571--577.Google ScholarGoogle Scholar
  34. Tazari, S., and Müller-Hannemann, M. 2008. To fear or not to fear large hidden constants: Implementing a planar Steiner tree PTAS. Tech. rep. TUD-CD-2008-2, Technische Universität Darmstadt, Department of Computer Science, Darmstadt, Germany.Google ScholarGoogle Scholar
  35. Whitney, H. 1933. Planar graphs. Fundam. Math. 21, 73--84.Google ScholarGoogle ScholarCross RefCross Ref
  36. Widmayer, P. 1986. A fast approximation algorithm for Steiner's problem in graphs. In Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, vol. 246. Springer Verlag, 17--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wu, Y., Widmayer, P., and Wong, C. 1986. A faster approximation algorithm for the Steiner problem in graphs. Acta Inf. 23, 2, 223--229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zelikovsky, A. 1993. An 11/6-approximation algorithm for the network Steiner problem. Algorithmica 9, 463--470.Google ScholarGoogle ScholarCross RefCross Ref
  39. Zelikovsky, A. 1994. Better approximation bounds for the network and Euclidean Steiner tree problems. Tech. rep. CS-96-06, University of Virginia. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. An O(n log n) approximation scheme for Steiner tree in planar graphs

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Algorithms
      ACM Transactions on Algorithms  Volume 5, Issue 3
      July 2009
      222 pages
      ISSN:1549-6325
      EISSN:1549-6333
      DOI:10.1145/1541885
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 July 2009
      • Accepted: 1 September 2008
      • Revised: 1 August 2008
      • Received: 1 April 2007
      Published in talg Volume 5, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader