skip to main content
10.1145/1553374.1553431acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
research-article

Group lasso with overlap and graph lasso

Published:14 June 2009Publication History

ABSTRACT

We propose a new penalty function which, when used as regularization for empirical risk minimization procedures, leads to sparse estimators. The support of the sparse vector is typically a union of potentially overlapping groups of co-variates defined a priori, or a set of covariates which tend to be connected to each other when a graph of covariates is given. We study theoretical properties of the estimator, and illustrate its behavior on simulated and breast cancer gene expression data.

References

  1. Bach, F. (2008). Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res., 9, 1179--1225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bach, F. (2009). Exploring large feature spaces with hierarchical multiple kernel learning. Adv. Neural. Inform. Process Syst., 105--112.Google ScholarGoogle Scholar
  3. Chen, S. S., Donoho, D. L., & Saunders, M. (1998). Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 20, 33--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D., & Ideker, T. (2007). Network-based classification of breast cancer metastasis. Mol. Syst. Biol., 3, 140.Google ScholarGoogle ScholarCross RefCross Ref
  5. Fu, W., & Knight, K. (2000). Asymptotics for Lasso-type estimators. Ann. Stat., 28, 1356--1378.Google ScholarGoogle ScholarCross RefCross Ref
  6. Jenatton, R., Audibert, J.-Y., & Bach, F. (2009). Structured Variable Selection with Sparsity-Inducing Norms. INRIA - Ecole Normale Supéérieure de Paris.Google ScholarGoogle Scholar
  7. Kumagai, S. (1980). An implicit function theorem: Comment. J. Optim. Theor. Appl., 31, 285--288.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Meier, L., van de Geer, S., & Büühlmann, P. (2008). The group lasso for logistic regression. J. Roy. Stat. Soc. B, 70, 53--71.Google ScholarGoogle ScholarCross RefCross Ref
  9. Obozinski, G., Taskar, B., & Jordan, M. (2009). Joint co-variate selection and joint subspace selection for multiple classification problems. Stat. Comput.. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y. (2008). SimpleMKL. J. Mach. Learn. Res., 9, 2491--2521.Google ScholarGoogle Scholar
  11. Rapaport, F., Zynoviev, A., Dutreix, M., Barillot, E., & Vert, J.-P. (2007). Classification of microarray data using gene networks. BMC Bioinformatics, 8, 35.Google ScholarGoogle ScholarCross RefCross Ref
  12. Roth, V. (2002). The generalized lasso: a wrapper approach to gene selection for microarray data. Proc. Conference on Automated Deduction 14, 252--255.Google ScholarGoogle Scholar
  13. Roth, V., & Fischer, B. (2008). The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. Int. Conf. Mach. Learn., 848--855. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Subramanian, A., et al., (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102, 15545--15550.Google ScholarGoogle ScholarCross RefCross Ref
  15. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc. B., 58, 267--288.Google ScholarGoogle ScholarCross RefCross Ref
  16. Van de Vijver, M. J., et al., (2002). A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med., 347, 1999--2009.Google ScholarGoogle ScholarCross RefCross Ref
  17. Wainwright, M. J. (2006). Sharp thresholds for high-dimensional and noisy recovery of sparsity (Technical Report 709). UC Berkeley, Department of Statistics.Google ScholarGoogle Scholar
  18. Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B, 68, 49--67.Google ScholarGoogle ScholarCross RefCross Ref
  19. Zhao, P., Rocha, G., & Yu, B. (2009). Grouped and hierarchical model selection through composite absolute penalties. Ann. Stat. To appear.Google ScholarGoogle Scholar
  20. Zhao, P., & Yu, B. (2006). On model selection consistency of lasso. J. Mach. Learn. Res., 7, 2541--2563. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Group lasso with overlap and graph lasso

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Other conferences
                ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning
                June 2009
                1331 pages
                ISBN:9781605585161
                DOI:10.1145/1553374

                Copyright © 2009 Copyright 2009 by the author(s)/owner(s).

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 14 June 2009

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

                Acceptance Rates

                Overall Acceptance Rate140of548submissions,26%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader