skip to main content
research-article

On centroidal voronoi tessellation—energy smoothness and fast computation

Authors Info & Claims
Published:08 September 2009Publication History
Skip Abstract Section

Abstract

Centroidal Voronoi tessellation (CVT) is a particular type of Voronoi tessellation that has many applications in computational sciences and engineering, including computer graphics. The prevailing method for computing CVT is Lloyd's method, which has linear convergence and is inefficient in practice. We develop new efficient methods for CVT computation and demonstrate the fast convergence of these methods. Specifically, we show that the CVT energy function has 2nd order smoothness for convex domains with smooth density, as well as in most situations encountered in optimization. Due to the 2nd order smoothness, it is possible to minimize the CVT energy functions using Newton-like optimization methods and expect fast convergence. We propose a quasi-Newton method to compute CVT and demonstrate its faster convergence than Lloyd's method with various numerical examples. It is also significantly faster and more robust than the Lloyd-Newton method, a previous attempt to accelerate CVT. We also demonstrate surface remeshing as a possible application.

Skip Supplemental Material Section

Supplemental Material

References

  1. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3, 617--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alliez, P., Colin de Verdière, É., Devillers, O., and Isenburg, M. 2003. Centroidal Voronoi diagrams for isotropic surface remeshing. Graph. Models 67, 3, 204--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Arthur, D. and Vassilvitskii, S. 2007. k-means++: the advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. 1027--1030. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Asami, Y. 1991. A note on the derivation of the first and second derivatives of objective functions in geographical optimization problems. J. Faculty Eng. The University of Tokyo(B) XLI, 1, 1--13.Google ScholarGoogle Scholar
  5. Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. 1996. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 4, 469--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. ACM Trans. Graph. 23, 3, 905--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cortés, J., Martínez, S., and Bullo, F. 2005. Spatially-distributed coverage optimization and control with limited-range interactions. ESAIM Control, Optimisation Calculus Variations 11, 4, 691--719.Google ScholarGoogle ScholarCross RefCross Ref
  8. Du, Q. and Emelianenko, M. 2006. Acceleration schemes for computing centroidal Voronoi tessellations. Numer. Linear Alg. Appl. 13, 2-3, 173--192.Google ScholarGoogle ScholarCross RefCross Ref
  9. Du, Q., Emelianenko, M., and Ju, L. 2006. Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J. Number. Anal. 44, 1, 102--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev. 41, 4, 637--676. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Du, Q. and Gunzburger, M. 2002. Grid generation and optimization based on centroidal Voronoi tessellations. Appl. Math. Computat. 133, 2-3, 591--607. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Du, Q., Gunzburger, M. D., and Ju, L. 2003. Constrained centroidal Voronoi tesselations for surfaces. SIAM J. Sci. Comput. 24, 5, 1488--1506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Du, Q. and Wang, D. 2003. Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations. Int. J. Num. Meth. Eng. 56, 9, 1355--1373.Google ScholarGoogle ScholarCross RefCross Ref
  14. Du, Q. and Wang, D. 2005a. Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26, 3, 737--761. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Du, Q. and Wang, D. 2005b. The optimal centroidal Voronoi tessellations and the Gersho's conjecture in the three-dimensional space. Comput. Math. Appl. 49, 9-10, 1355--1373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Du, Q. and Wang, X. 2004. Centroidal Voronoi tessellation based algorithms for vector fields visualization and segmentation. In Proceedings of the IEEE Conference on Visualization. IEEE Computer Society, Los Alamitos, CA, 43--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fabri, A. 2001. CGAL-the computational geometry algorithm library. In Proceedings of the 10th International Meshing Roundtable. 137--142.Google ScholarGoogle Scholar
  18. Genz, A. and Cools, R. 2003. An adaptive numerical cubature algorithm for simplices. ACM Trans. Math. Softw. 29, 3, 297--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gersho, A. 1979. Asymptotically optimal block quantization. IEEE Trans. Inform. Theory 25, 4, 373--380.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Gruber, P. M. 2004. Optimum quantization and its applications. Advances Math. 186, 2, 456--497.Google ScholarGoogle ScholarCross RefCross Ref
  21. Iri, M., Murota, K., and Ohya, T. 1984. A fast Voronoi-diagram algorithm with applications to geographical optimization problems. In Proceedings of the 11th IFIP Conference. 273--288.Google ScholarGoogle Scholar
  22. Jiang, L., Byrd, R. H., Eskow, E., and Schnabel, R. B. 2004. A preconditioned L-BFGS algorithm with application to molecular energy minimization. Tech. rep., University of Colorado.Google ScholarGoogle Scholar
  23. Ju, L., Du, Q., and Gunzburger, M. 2002. Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations. Parall. Comput. 28, 10, 1477--1500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kunze, R., Wolter, F.-E., and Rausch, T. 1997. Geodesic Voronoi diagrams on parametric surfaces. In Proceedings of the Computer Graphics International. 230--237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Leibon, G. and Letscher, D. 2000. Delaunay triangulations and Voronoi diagrams for Riemannian manifolds. In Proceedings of the 16th Annual Symposium on Computational Geometry (SCG). 341--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lin, C.-J. and Moré, J. J. 1999. Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21, 1, 24--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Liu, D. C. and Nocedal, J. 1989. On the limited memory BFGS method for large scale optimization. Math. Prog. Series A and B 45, 3, 503--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lloyd, S. P. 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theory 28, 2, 129--137.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. MacQueen, J. 1966. Some methods for classification and analysis of multivariate observations. In Proceedings of the 15th Berkeley Symposium on Mathematical Statistics and Problems, Vol. 1. University of California Press, 281--297.Google ScholarGoogle Scholar
  30. Massey, W. S. 1991. A Basic Course in Algebraic Topology. Springer.Google ScholarGoogle Scholar
  31. McKenzie, A., Lombeyda, S. V., and Desbrun, M. 2005. Vector field analysis and visualization through variational clustering. In Proceedings of EuroVis. 29--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. More, J. J. and Thuente, D. J. 1994. Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 3, 286--307. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Nocedal, J. 1980. Updating quasi-Newton matrices with limited storage. Math. Computat. 35, 773--782.Google ScholarGoogle ScholarCross RefCross Ref
  34. Nocedal, J. and Wright, S. J. 2006. Numerical Optimization, 2nd Ed. Springer.Google ScholarGoogle Scholar
  35. Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. 2000. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams 2nd Ed. John Wiley&Sons, Inc.Google ScholarGoogle ScholarCross RefCross Ref
  36. Ostrovsky, R., Rabani, Y., Schulman, L. J., and Swamy, C. 2006. The effectiveness of Lloyd-type methods for the k-means problem. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS). 165--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Peyré, G. and Cohen, L. 2004. Surface segmentation using geodesic centroidal tesselation. In Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT). 995--1002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Schlick, T. 1992. Optimization methods in computational chemistry. In Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds. John Wiley&Sons, Inc.Google ScholarGoogle Scholar
  39. Schnabel, R. B. and Eskow, E. 1999. A revised modified Cholesky factorization algorithm. SIAM J. Optim. 9, 4, 1135--1148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tòth, G. F. 2001. A stability criterion to the moment theorem. Studia Sci. Math. Hungar. 34, 209--224.Google ScholarGoogle Scholar
  41. Valette, S. and Chassery, J.-M. 2004. Approximated centroidal Voronoi diagrams for uniform polygonal mesh coarsening. Comput. Graph. Forum 23, 3, 381--389.Google ScholarGoogle ScholarCross RefCross Ref
  42. Valette, S., Chassery, J.-M., and Prost, R. 2008. Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Trans. Vis. Comput. Graph. 14, 2, 369--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yan, D.-M., Lévy, B., Liu, Y., Sun, F., and Wang, W. 2009. Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Comput. Graph. Forum (Symposium on Geometry Processing 2009), 28 5, 1445--1455. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. On centroidal voronoi tessellation—energy smoothness and fast computation

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 28, Issue 4
              August 2009
              116 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/1559755
              Issue’s Table of Contents

              Copyright © 2009 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 8 September 2009
              • Accepted: 1 May 2009
              • Received: 1 December 2008
              Published in tog Volume 28, Issue 4

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader