skip to main content
10.1145/1576246.1531368acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Detail preserving continuum simulation of straight hair

Published:27 July 2009Publication History

ABSTRACT

Hair simulation remains one of the most challenging aspects of creating virtual characters. Most research focuses on handling the massive geometric complexity of hundreds of thousands of interacting hairs. This is accomplished either by using brute force simulation or by reducing degrees of freedom with guide hairs. This paper presents a hybrid Eulerian/Lagrangian approach to handling both self and body collisions with hair efficiently while still maintaining detail. Bulk interactions and hair volume preservation is handled efficiently and effectively with a FLIP based fluid solver while intricate hair-hair interaction is handled with Lagrangian self-collisions. Thus the method has the efficiency of continuum/guide based hair models with the high detail of Lagrangian self-collision approaches.

Skip Supplemental Material Section

Supplemental Material

References

  1. Anjyo, K., Usami, Y., and Kurihara, T. 1992. A simple method for extracting the natural beauty of hair. In Comp. Graph. (Proc. SIGGRAPH 1992), ACM, vol. 26, 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bando, Y., Chen, B.-Y., and Nishita, T. 2003. Animating hair with loosely connected particles. In Comp. Graph. Forum (Eurographics Proc.), 411--418.Google ScholarGoogle Scholar
  3. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. on Graph. 27, 3, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bertails, F., Kim, T.-Y., Cani, M.-P., and Neumann, U. 2003. Adaptive wisp tree - a multiresolution control structure for simulating dynamics clustering in hair motion. ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 207--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bertails, F., Ménier, C., and Cani, M.-P. 2005. A practical self-shadowing algorithm for interactive hair animation. In Graph. Interface, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Trans. on Graph. 25, 3, 1180--1187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proc. of SIGGRAPH 2002, ACM, vol. 21, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Brown, J., Latombe, J.-C., and Montgomery, K. 2004. Real-time knot-tying simulation. Vis. Comput. 20, 2, 165--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Carlson, M., Mucha, P., Van Horn, R., and Turk, G. 2002. Melting and flowing. In Proc. of the ACM SIGGRAPH Symp. on Comput. Anim., vol. 21, 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chang, J., Jin, J., and Yu, Y. 2002. A practical model for hair mutual interactions. In ACM SIGGRAPH/Eurographics Symp. on Comp. Anim., 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Choe, B., and Ko, H.-S. 2005. A statistical wisp model and pseudophysical approaches for interactive hairstyle generation. IEEE Trans. on Vis. and Comput. Graph. 11, 2, 160--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Choe, B., Choi, M., and Ko, H.-S. 2005. Simulating complex hair with robust collision handling. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 153--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Chorin, A. 1967. A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12--26.Google ScholarGoogle ScholarCross RefCross Ref
  15. Grégoire, M., and Schömer, E. 2006. Interactive simulation of one-dimensional flexible parts. In Symp. on Solid and Physical Modeling, 95--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gupta, R., Montagnoo, M., Volino, P., and Magnenat-Thalmann, N. 2006. Optimized framework for real time hair simulation. In CGI Proc. 2006, 702--710. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hadap, S., and Magnenat-Thalmann, N. 2001. Modeling dynamic hair as a continuum. In Comp. Graph. Forum (Eurographics Proc.), 329--338.Google ScholarGoogle Scholar
  18. Hadap, S. 2006. Oriented strands: dynamics of stiff multibody system. In SCA '06: Proc. of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. anim., 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Harmon, D., Vouga, E., Tamstorf, R., and Grinspun, E. 2008. Robust treatment of simultaneous collisions. ACM Trans. on Graph. 27, 3, 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kim, T.-Y., and Neumann, U. 2002. Interactive multiresolution hair modeling and editing. In Proc. of SIGGRAPH 2002, ACM, vol. 21, 620--629. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R., 2008. Two-way coupled SPH and particle level set fluid simulation.Google ScholarGoogle Scholar
  22. Moon, J. T., Walter, B., and Marschner, S. 2008. Efficient multiple scattering in hair using spherical harmonics. ACM Trans. Graph. 27, 3, 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pai, D. K. 2002. Strands: Interactive simulation of thin solids using cosserat models. In Proc. of Eurographics, vol. 21 of Comput. Graph. Forum, Eurographics Assoc., 347--352.Google ScholarGoogle Scholar
  24. Petrovic, L., Henne, M., and Anderson, J. 2005. Volumetric methods for simulation and rendering of hair. Tech. rep., Pixar Animation Studios.Google ScholarGoogle Scholar
  25. Plante, E., Cani, M.-P., and Poulin, P. 2002. Capturing the complexity of hair motion. Graph. Models 64, 1, 40--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rosenblum, R. E., Carlson, W. E., and Tripp III, E. 1991. Simulating the structure and dynamics of human hair: modelling, rendering and animation. J. Vis. and Comput. Anim. 2, 4, 141--148.Google ScholarGoogle ScholarCross RefCross Ref
  28. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. on Graph. 27, 3, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sifakis, E., Marino, S., and Teran, J. 2008. Globally coupled impulse-based collision handling for cloth simulation. In ACM SIGGRAPH/Eurographics Symp. on Comp. Anim.Google ScholarGoogle Scholar
  30. Spillmann, J., and Teschner, M. 2007. CoRDE: cosserat rod elements for the dynamic simulation of one-dimensional elastic object. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 209--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 1999, ACM, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ward, K., and Lin, M. C. 2003. Adaptive grouping and subdivision for simulating hair dynamics. In Pacific Graph., 234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ward, K., Lin, M. C., Lee, J., Fisher, S., and Macri, D. 2003. Modeling hair using level-of-detail representations. In Proc. of Comput. Anim. and Social Agents (CASA), 41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: Styling, simulation and rendering. IEEE Trans. on Vis. and Comput. Graph. 13, 2, 213--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yu, Y. 2001. Modeling realistic virtual hairstyles. In Pacific Graph., 295--304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. on Graph. 24, 3, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zinke, A., Yuksel, C., Weber, A., and Keyser, J. 2008. Dual scattering approximation for fast multiple scattering in hair. ACM Trans. on Graph. 27, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Detail preserving continuum simulation of straight hair

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGGRAPH '09: ACM SIGGRAPH 2009 papers
        July 2009
        795 pages
        ISBN:9781605587264
        DOI:10.1145/1576246

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2009

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGGRAPH '09 Paper Acceptance Rate78of439submissions,18%Overall Acceptance Rate1,822of8,601submissions,21%

        Upcoming Conference

        SIGGRAPH '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader