skip to main content
article
Free Access

Image rendering by adaptive refinement

Published:31 August 1986Publication History
Skip Abstract Section

Abstract

This paper describes techniques for improving the performance of image rendering on personal workstations by using CPU cycles going idle while the user is examining a static image on the screen. In that spirit, we believe that a renderer's work is never done. Our goal is to convey the most information to the user as early as possible, with image quality constantly improving with time. We do this by first generating a crude image rapidly and then adaptively refining it where necessary as long as the user does not change viewing parameters. The renderer operates in a succession of phases, first displaying only vertices of polygons, next polygon edges, then flat shading polygons, then shadowing polygons, then Gouraud shading polygons, then Phong shading polygons, and finally anti-aliasing. Performance is enhanced by each phase using results from previous phases and trimming the amount of data needed by the next phase. In this way, only a fraction of the pixels in an image may be Phong shaded while the rest may be Gouraud or flat shaded. Similarly anti-aliasing is performed only on pixels around which there is significant color change. The system features fast response to user intervention, encourages user intervention at any moment, and makes useful the idle cycles in a personal computer.

References

  1. ATHERTON78 Atherton, Peter, Kevin Weiler, and Donald Greenberg Polygon Shadow Generation. Computer Graphics, 12, No. 3 August 1978 pp. 275-281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. BAUMGART75 Baumgart, Bruce G. A Polyhedron Representation for Computer Vision. NCC 1975, pp. 589-596.Google ScholarGoogle Scholar
  3. BLOOMENTHAL83 Bloomenthal, Jules Edge Inference with Applications to Antialiasing. Computer Graphics, 17, No. 3 July 1983 pp. 157-162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. CARPENTER84 Carpenter, Loren The A-buffer, an Antialiased Hidden Surface Method. Computer Graphics, 18, No. 3 July 1984 pp. 103-108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. CATMULL74 Catmull, Edwin E. A Subdivision Algorithm for Computer Display of Curved Surfaces. Ph.D. Diss. University of Utah December 1974. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. CLARK76 Clark, James H. Hierarchical Geometric Models for Visible Surface Algorithms. Communications of the ACM, 19, No. 10 October 1976 pp. 547-554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. COOK84 Cook, Robert L. Shade Trees. Computer Graphics, 18, No. 3 July 1984 pp. 223-231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. CROW84 Crow, Franklin C. Summed-Area Tables for Texture Mapping. Computer Graphics, 18, No. 3 July 1984 pp. 207-212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. FORREST85 Forrest, A.R. Antialiasing in Practice in Fundamental Algorithms for Computer Graphics, Ed. Earnshaw, R.A. in Proc. of NATO ASI Series. Springer-Verlag, 1985 pp. 113-134.Google ScholarGoogle Scholar
  10. FOURNIER82 Fournier, Alain, Don Fussell, and Loren C. Carpenter Computer Rendering of Stochastic Models. Communications of the ACM, 25, No. 6 June 1982 pp. 371-384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. FUCHS82 Fuchs, H., S.M. Pizer, E.R. Heinz, L.C. Tsai, and S.H. Bloomberg Adding a True 3-D Display to a Raster Graphic System. IEEE Computer Graphics and Applications, 2, No. 7 September 1982 pp. 73-78.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. FUCHS85 Fuchs, Henry, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D. Austin, Frederick P. Brooks, lr., John G. Eyles, and John Poulton Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in Pixel- Planes. Computer Graphics, 19, No. 3 July 1985 pp. 111-120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. HALL83 Hall, Roy A., and Donald P. Greenberg A Testbed for Realistic Image Synthesis. IEEE Computer Graphics and Applications, 3, No. 8 November 1983 pp. 10-20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. HILL83 Hill, F.S., Jr., Sheldon Walker, Jr., and Fuwen Gao Interactive Image Query System Using Progressive Transmission. Computer Graphics, 17, No. 3 July 1983 pp. 323-330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. HUNTER78 Hunter, G.M. Efficient Computation and Data Structures for Graphics. Ph.D. Diss. Princeton University 1978. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. JACKINS80 Jack.ins, C., and Tanimoto, S.L. Oct-trees and Their Use in Representing Three-Dimensional Objects. Computer Graphics and Image Processing, 14, No. 3 November 1980 pp. 249-270.Google ScholarGoogle Scholar
  17. KNOWLTON80 Knowlton, Ken Progressive Transmission of Grey-Scale and Binary Pictures by Simple, Efficient, and Lossless Encoding Schemes. Proceedings of the IEEE, 68, No. 7 July 1980 pp. 885-896.Google ScholarGoogle ScholarCross RefCross Ref
  18. LANE80 Lane, Jeffrey M., Loren C. Carpenter, James F. Blinn, and Turner Whitted Scan Line Methods for Displaying Parametrically Defined Surfaces. Communications of the ACM, 23, No. 1 January 1980 pp. 23-34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. LEE85 Lee, Mark E., Richard A. Redner, and Samuel P. Uselton Statistically Optimized Sampling for Distributed Ray Tracing. Computer Graphics, 19, No. 3 July 1985 pp. 61-67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. MACDOUGAL84 MacDougal, Paul D. Generation and Management of Object Description Hierarchies for Simplification of Image Generation. Ph.D. Diss. Ohio State University August 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. MEAGHER80 Meagher, D. Octree: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer. Technical Report IPL-TR-80-111. Rensselaer Polytechnic Institute. 1980.Google ScholarGoogle Scholar
  22. MILLS84 Mills, Peter H., Henry Fuchs, and Stephen M. Pizer High-Speed Interaction on a Vibrating Mirror 3D Display. Proceedings of SPIE, 507 August 1984 pp. 93-101.Google ScholarGoogle Scholar
  23. NEWMAN73 Newman, William M. and Robert F. Sproull Principles of Interactive Computer Graphics 1st Edition, McGraw-Hill 1973 pp. 123-124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. POULTON85 Poulton, John, Henry Fuchs, John D. Austin, John G. Eyles, Justin Heinecke, Cheng-Hong Hsieh, Jack Goldfeather, Jeff P. Hultquist, Susan Spach PIXEL-PLANES: Building a VLSI-Based Graphic System Proceedings of the 1985 Chapel Hill Conference on VLSI Computer Science Press pp. 35-60.Google ScholarGoogle Scholar
  25. SAMET84 Samet, Hanan The Quadtree and Related Hierarchical Structures. A CM Computing Surveys, 16, No. 2 June 1984 pp. t87-260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. SLOAN79 Sloan, Kenneth R., Jr., and Steven L. Tanimoto Progressive Refinement of Raster Images. IEEE Transactions on Computers, c-28, No. 11 November 1979 pp. 871-874.Google ScholarGoogle Scholar
  27. STRAUSS84 Strass, P., M. Shantis, and D. Laidlaw SCEFO: A Standard Scene Format for image Creation and Animation. Brown University Graphics Group Memo, 1984.Google ScholarGoogle Scholar
  28. VANDAM86 Van Dam, A. Personal communication. 1986.Google ScholarGoogle Scholar
  29. WHITTED80 Whitted, Turner An Improved Illumination Model for Shaded Display. Communications of the ACM, 23, No. 6 June 1980 pp. 343-349 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Image rendering by adaptive refinement

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM SIGGRAPH Computer Graphics
            ACM SIGGRAPH Computer Graphics  Volume 20, Issue 4
            Aug. 1986
            300 pages
            ISSN:0097-8930
            DOI:10.1145/15886
            Issue’s Table of Contents
            • cover image ACM Conferences
              SIGGRAPH '86: Proceedings of the 13th annual conference on Computer graphics and interactive techniques
              August 1986
              332 pages
              ISBN:0897911962
              DOI:10.1145/15922

            Copyright © 1986 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 31 August 1986

            Check for updates

            Qualifiers

            • article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader