skip to main content
research-article

Robust task-based control policies for physics-based characters

Published:01 December 2009Publication History
Skip Abstract Section

Abstract

We present a method for precomputing robust task-based control policies for physically simulated characters. This allows for characters that can demonstrate skill and purpose in completing a given task, such as walking to a target location, while physically interacting with the environment in significant ways. As input, the method assumes an abstract action vocabulary consisting of balance-aware, step-based controllers. A novel constrained state exploration phase is first used to define a character dynamics model as well as a finite volume of character states over which the control policy will be defined. An optimized control policy is then computed using reinforcement learning. The final policy spans the cross-product of the character state and task state, and is more robust than the conrollers it is constructed from. We demonstrate real-time results for six locomotion-based tasks and on three highly-varied bipedal characters. We further provide a game-scenario demonstration.

Skip Supplemental Material Section

Supplemental Material

References

  1. Abe, Y., da Silva, M., and Popović, J. 2007. Multiobjective control with frictional contacts. In Proc. ACM SIGGRAPH/EG Symposium on Computer Animation, 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Atkeson, C. G., and Morimoto, J. 2003. Nonparametric representation of policies and value functions: A trajectory-based approach. In Advances in Neural Information Processing Systems 15, 1611--1618.Google ScholarGoogle Scholar
  3. Atkeson, C. G., and Stephens, B. 2007. Random sampling of states in dynamic programming. In Proc. Neural Information Processing Systems Conf.Google ScholarGoogle Scholar
  4. Byl, K., and Tedrake, R. 2008. Approximate optimal control of the compass gait on rough terrain. In Proc. IEEE Int'l Conf. on Robotics and Automation.Google ScholarGoogle Scholar
  5. Chestnutt, J., Lau, M., Cheung, K. M., Kuffner, J., Hodgins, J. K., and Kanade, T. 2005. Footstep planning for the Honda ASIMO humanoid. In Proc. IEEE Int'l Conf. on Robotics and Automation.Google ScholarGoogle Scholar
  6. Chestnutt, J. 2007. Navigation Planning for Legged Robots. PhD thesis, Carnegie Mellon University.Google ScholarGoogle Scholar
  7. Choi, M., Lee, J., and Shin, S. 2003. Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Transactions on Graphics 22, 2, 182--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Coros, S., Beaudoin, P., Yin, K., and van de Panne, M. 2008. Synthesis of constrained walking skills. ACM Trans. on Graphics (Proc. SIGGRAPH ASIA) 27, 5, Article 113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics (Proc. SIGGRAPH) 27, 3, Article 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. da Silva, M., Durand, F., and Popovic, J. 2009. Linear Bellman combination for control of character animation. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, Article 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ernst, D., Geurts, P., and Wehenkel, L. 2005. Tree-based batch mode reinforcement learning. Journal of Machine Learning Research 6, 503--556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proc. ACM SIGGRAPH, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hodgins, J., Wooten, W., Brogan, D., and O'Brien, J. 1995. Animating human athletics. In Proc. ACM SIGGRAPH, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ikemoto, L., Arikan, O., and Forsyth, D. A. 2005. Learning to move autonomously in a hostile world. Tech. Rep. UCB/CSD-05-1395, EECS Department, University of California, Berkeley, Jun.Google ScholarGoogle Scholar
  15. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H. 2003. Biped walking pattern generation by using preview control of zero-moment point. In Proc. IEEE Int'l Conf. on Robotics and Automation.Google ScholarGoogle Scholar
  16. Khatib, O., Sentis, L., Park, J., and Warren, J. 2004. Whole body dynamic behavior and control of human-like robots. International Journal of Humanoid Robotics 1, 1, 29--43.Google ScholarGoogle ScholarCross RefCross Ref
  17. Laszlo, J. F., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proc. ACM SIGGRAPH, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lau, M., and Kuffner, J. J. 2005. Behavior planning for character animation. In ACM SIGGRAPH/EG Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lau, M., and Kuffner, J. 2006. Precomputed search trees: Planning for interactive goal-driven animation. In ACM SIGGRAPH/EG Symposium on Computer Animation, 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lee, J., and Lee, K. H. 2004. Precomputing avatar behavior from human motion data. ACM SIGGRAPH/EG Symposium on Computer Animation, 79--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lo, W., and Zwicker, M. 2008. Real-time planning for parameterized human motion. In ACM SIGGRAPH/EG Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. McCann, J., and Pollard, N. 2007. Responsive characters from motion fragments. ACM Transactions on Graphics (Proc. SIGGRAPH) 26, 3, Article 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Morimoto, J., and Atkeson, C. G. 2007. Learning biped locomotion: Application of poincare-map-based reinforcement leraning. IEEE Robotics&Automation Magazine 14, 2, 41--51.Google ScholarGoogle Scholar
  24. Morimoto, J., Atkeson, C. G., Endo, G., and Cheng, G. 2007. Improving humanoid locomotive performance with learnt approximated dynamics via guassian processes for regression. In Proc. IEEE Int'l Conf. on Robotics and Automation.Google ScholarGoogle Scholar
  25. Muico, U., Lee, Y., Popovic', J., and Popovic', Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3, Article 81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. ODE. Open dynamics engine, http://www.ode.org/.Google ScholarGoogle Scholar
  27. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. In Proc. ACM SIGGRAPH, 349--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sharon, D., and van de Panne, M. 2005. Synthesis of controllers for stylized planar bipedal walking. In Proc. IEEE Int'l Conf. on Robotics and Automation.Google ScholarGoogle Scholar
  29. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3, Article 107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sutton, R., and Barto, A. 1998. Reinforcement Learning: An Introduction. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tedrake, R., Zhang, T., and Seung, H. 2004. Stochastic policy gradient reinforcement learning on a simple 3D biped. In Proc. Int'l Conf. on Intelligent Robots and Systems, vol. 3.Google ScholarGoogle Scholar
  32. Treuille, A., Lee, Y., and Popović, Z. 2007. Near-optimal character animation with continuous control. ACM Transactions on Graphics (Proc. SIGGRAPH) 26, 3, Article 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Transactions on Graphics (Proc. SIGGRAPH) 26, 3, Article 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yoshida, E., Belousov, I., Esteves, C., and Laumond, J. 2005. Humanoid motion planning for dynamic tasks. In Humanoid Robots.Google ScholarGoogle Scholar
  35. Zhao, L., and Safonova, A. 2008. Achieving good connectivity in motion graphs. In ACM SIGGRAPH/EG Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zordan, V., Majkowska, A., Chiu, B., and Fast, M. 2005. Dynamic response for motion capture animation. ACM Transactions on Graphics (Proc. SIGGRAPH) 24, 3, 697--701. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Robust task-based control policies for physics-based characters

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 28, Issue 5
      December 2009
      646 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1618452
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 December 2009
      Published in tog Volume 28, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader