skip to main content
10.1145/1644038.1644057acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

Mercury: a wearable sensor network platform for high-fidelity motion analysis

Published:04 November 2009Publication History

ABSTRACT

This paper describes Mercury, a wearable, wireless sensor platform for motion analysis of patients being treated for neuromotor disorders, such as Parkinson's Disease, epilepsy, and stroke. In contrast to previous systems intended for short-term use in a laboratory, Mercury is designed to support long-term, longitudinal data collection on patients in hospital and home settings. Patients wear up to 8 wireless nodes equipped with sensors for monitoring movement and physiological conditions. Individual nodes compute high-level features from the raw signals, and a base station performs data collection and tunes sensor node parameters based on energy availability, radio link quality, and application specific policies.

Mercury is designed to overcome the core challenges of long battery lifetime and high data fidelity for long-term studies where patients wear sensors continuously 12 to 18 hours a day. This requires tuning sensor operation and data transfers based on energy consumption of each node and processing data under severe computational constraints. Mercury provides a high-level programming interface that allows a clinical researcher to rapidly build up different policies for driving data collection and tuning sensor lifetime. We present the Mercury architecture and a detailed evaluation of two applications of the system for monitoring patients with Parkinson's Disease and epilepsy.

References

  1. A. Ahmadi, D. Rowlands, and D. James. Investigating the translational and rotational motion of the swing using accelerometers for athlete skill assessment. Sensors, 2006. 5th IEEE Conference on, pages 980--983, Oct. 2006.Google ScholarGoogle ScholarCross RefCross Ref
  2. F. R. Allen, E. Ambikairajah, N. H. Lovell, and B. G. Celler. Classification of a known sequence of motions and postures from accelerometry data using adapted gaussian mixture models. PHYSIOLOGICAL MEASUREMENT, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  3. R. Aylward and J. A. Paradiso. A compact, high-speed, wearable sensor network for biomotion capture and interactive media. In IPSN '07, New York, NY, USA, 2007. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Boyle, M. Karunanithi, T. Wark, W. Chan, and C. Colavitti. Quantifying functional mobility progress for chronic disease management. EMBS '06, pages 5916--5919, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  5. T. R. Burchfield and S. Venkatesan. Accelerometer-based human abnormal movement detection in wireless sensor networks. In HealthNet '07, pages 67--69, New York, NY, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Ceulemans, B. Vanrumste, P. Colleman, S. Omloop, and K. Cuppens. Detection of nocturnal epileptic seizures of pediatric patients using accelerometers. In Belgian Day on Biomedical Engineering, 2007.Google ScholarGoogle Scholar
  7. J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy. Wearable sensors for reliable fall detection. IEEE-EMBS'05, pages 3551--3554, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  8. T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel, B. Harrison, B. Hemingway, J. Hightower, P. Klasnja, K. Koscher, A. LaMarca, J. A. Landay, L. LeGrand, J. Lester, A. Rahimi, A. Rea, and D. Wyatt. The mobile sensing platform: An embedded system for capturing and recognizing activities. IEEE Pervasive Magazine, April 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. W. Curtis, E. J. Pino, J. M. Bailey, E. I. Shih, J. Waterman, S. A. Vinterbo, T. O. Stair, J. V. Guttag, R. A. Greenes, and L. Ohno-Machado. Smart: An integrated wireless system for monitoring unattended patients. Journal of the American Medical Informatics Association, 15(1):44--53, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  10. R. DeVaul, M. Sung, J. Gips, and A. Pentland. Mithril 2003: applications and architecture. IEEE International Symposium of Wearable Computing, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. O. Devinsky. Tonic-clonic seizures. http://www.epilepsy.com/epilepsy/seizure_tonicclonic, 2004.Google ScholarGoogle Scholar
  12. C. Doukas and I. Maglogiannis. Advanced patient or elder fall detection based on movement and sound data. Pervasive-Health'08, pages 103--107, 30 2008-Feb. 1 2008.Google ScholarGoogle ScholarCross RefCross Ref
  13. E. Farella, L. Benini, B. Riccò and A. Acquaviva. Moca: A low-power, low-cost motion capture system based on integrated accelerometers. Advances in Multimedia, 2007(82638), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Flinn and M. Satyanarayanan. Managing battery lifetime with energy-aware adaptation. ACM Transactions on Computer Systems (TOCS), 22(2), May 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. Ganti, P. Jayachandran, T. Abdelzaher, and J. Stankovic. SATIRE: A Software Architecture for Smart AtTIRE. In Proc. ACM Mobisys, Uppsala, Sweden, June 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC language: A holistic approach to networked embedded systems. In Proc. Programming Language Design and Implementation (PLDI), June 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. B. Greenstein, C. Mar, A. Pesterev, S. Farshchi, E. Kohler, J. Judy, and D. Estrin. Capturing high-frequency phenomena using a bandwidth-limited sensor network. In Proc. Sensys 2006, Boulder, CO, November 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. He, H. Li, and J. Tan. Real-time daily activity classification with wireless sensor networks using hidden markov model. Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pages 3192--3195, Aug. 2007.Google ScholarGoogle ScholarCross RefCross Ref
  19. T. Hester, R. Hughes, D. Sherrill, B. Knorr, M. Akay, J. Stein, and P. Bonato. Using wearable sensors to measure motor abilities following stroke. In BSN '06, April 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Intel Corporation. The SHIMMER Sensor Node Platform. 2006.Google ScholarGoogle Scholar
  21. S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis, S. Shenker, and I. Stoica. Flush: A Reliable Bulk Transport Protocol for Multihop Wireless Networks. In Proc. Sen-Sys'07, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Y. Kwon and M. Gross. Combining body sensors and visual sensors for motion training. In ACE '05: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in computer entertainment technology, pages 94--101, New York, NY, USA, 2005. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Lachenmann, P. J. Marron, D. Minder, and K. Rothermer. Meeting lifetime goals with energy levels. In Proc. ACM Sen-Sys, November 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. E. D. Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer: Component-based adaptation for mobile computing. In USITS'01: Proceedings of the 3rd conference on USENIX Symposium on Internet Technologies and Systems, pages 14--14, San Francisco, CA, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Q. Li, J. A. Stankovic, M. A. Hanson, A. T. Barth, J. Lach, and G. Zhou. Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. BSN'09, pages 138--143, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. X. Liu, P. Shenoy, and M. D. Corner. Chameleon: Application level power management. IEEE Transactions on Mobile Computing, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. B. Lo and G.-Z. Yang. Architecture for Body Sensor Networks. In Perspective in Pervasive Computing, pages 23--28, September 2005.Google ScholarGoogle ScholarCross RefCross Ref
  28. K. Lorincz, D. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder, G. Mainland, S. Moulton, and M. Welsh. Sensor Networks for Emergency Response: Challenges and Opportunities. IEEE Pervasive Computing, Oct--Dec 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. K. Lorincz, B. rong Chen, J. Waterman, G. Werner-Allen, and M. Welsh. Resource aware programming in the pixie os. In SenSys '08: Proceedings of the 6th ACM conference on Embedded network sensor systems, pages 211--224, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time synchronization protocol. In Second ACM Conference on Embedded Networked Sensor Systems, November 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. J. Mathie, B. G. Celler, N. H. Lovell, and A. C. F. Coster. Classification of basic daily movements using a triaxial accelerometer. Medical and Biological Engineering and Computing, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  32. F. Michahelles and B. Schiele. Sensing and monitoring professional skiers. Pervasive Computing, IEEE, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman, X. Zheng, and A. T. Campbell. Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application. In SenSys '08, pages 337--350, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. Narayanan and M. Satyanarayanan. Predictive resource management for wearable computing. In Proc. ACM MobiSys 2003, San Francisco, CA, May 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and K. R. Walker. Agile application-aware adaptation for mobility. In SOSP '97: Proceedings of the sixteenth ACM symposium on Operating systems principles, pages 276--287, Saint Malo, France, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. A. Otto, E. Jovanov, and A. Milenkovic. A wban-based system for health monitoring at home. In Proceedings of the 3rd IEEE EMBS International Summer School and Symposium on Medical Devices and Biosensors (ISSS-MDBS 2006), Boston, MA, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  37. S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. H. Growdon, M. Welsh, and P. Bonato. Analysis of feature space for monitoring persons with Parkinson's Disease with application to a wireless wearable sensor system. In Proc. 29th IEEE EMBS Annual International Conference, August 2007.Google ScholarGoogle ScholarCross RefCross Ref
  38. A. Pentland. Healthwear: medical technology becomes wearable. Computer, 37(5):42--49, May 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless sensor networks. In Proc. Second ACM Conference on Embedded Networked Sensor Systems (Sen-Sys), November 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Salarian, H. Russmann, F. Vingerhoets, C. Dehollain, Y. Blanc, P. Burkhard, and K. Aminian. Gait assessment in parkinson's disease: toward an ambulatory system for longterm monitoring. Biomedical Engineering, IEEE Transactions on, 51(8):1434--1443, Aug. 2004.Google ScholarGoogle Scholar
  41. Sentilla Tmote Sky. http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf.Google ScholarGoogle Scholar
  42. J. Sorber, A. Kostadinov, M. Brennan, M. Garber, M. Corner, and E. D. Berger. Eon: A Language and Runtime System for Perpetual Systems. In Proc. ACM SenSys, November 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Sung, C. Marci, and A. Pentland. Wearable feedback systems for rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2(1):17, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  44. M. Visintin, H. Barbeau, N. Korner-Bitensky, and N. E. Mayo. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke, 29(6):1122--1128, June 1998.Google ScholarGoogle ScholarCross RefCross Ref
  45. G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh. Lance: optimizing high-resolution signal collection in wireless sensor networks. In SenSys '08: Proceedings of the 6th ACM conference on Embedded network sensor systems, pages 169--182, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L. Fang, Z. He, S. Lin, and J. Stankovic. Alarm-net: Wireless sensor networks for assisted-living and residential monitoring. Technical Report CS-2006-11, University of Virginia, 2006.Google ScholarGoogle Scholar
  47. H. Zeng, X. Fan, C. S. Ellis, A. Lebeck, and A. Vahdat. ECOSystem: Managing Energy as a First Class Operating System Resource. In ASPLOS'02, San Jose, CA, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. G. Zhou, J. Lu, C.-Y. Wan, M. D. Yarvis, and J. A. Stankovic. BodyQoS: Adaptive and Radio-Agnostic QoS for Body Sensor Networks. In Proc. IEEE INFOCOM 2008, Phoenix, AZ, April 2008.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Mercury: a wearable sensor network platform for high-fidelity motion analysis

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SenSys '09: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems
          November 2009
          438 pages
          ISBN:9781605585192
          DOI:10.1145/1644038

          Copyright © 2009 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 4 November 2009

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate174of867submissions,20%