skip to main content
research-article

Computational visual attention systems and their cognitive foundations: A survey

Authors Info & Claims
Published:18 January 2010Publication History
Skip Abstract Section

Abstract

Based on concepts of the human visual system, computational visual attention systems aim to detect regions of interest in images. Psychologists, neurobiologists, and computer scientists have investigated visual attention thoroughly during the last decades and profited considerably from each other. However, the interdisciplinarity of the topic holds not only benefits but also difficulties: Concepts of other fields are usually hard to access due to differences in vocabulary and lack of knowledge of the relevant literature. This article aims to bridge this gap and bring together concepts and ideas from the different research areas. It provides an extensive survey of the grounding psychological and biological research on visual attention as well as the current state of the art of computational systems. Furthermore, it presents a broad range of applications of computational attention systems in fields like computer vision, cognitive systems, and mobile robotics. We conclude with a discussion on the limitations and open questions in the field.

References

  1. Abdi, H. 2007. Signal detection theory (SDT). In Encyclopedia of Measurement and Statistics, N. Salkind, Ed. Sage, CA.Google ScholarGoogle Scholar
  2. Aloimonos, Y., Weiss, I., and Bandopadhay, A. 1988. Active vision. Int. J. Comput. Vision 1, 4, 333--356.Google ScholarGoogle ScholarCross RefCross Ref
  3. Aristotle. On Sense and the Sensible. The Internet Classics Archive, 350 B.C.E., translated by J. I. Beare.Google ScholarGoogle Scholar
  4. Awh, E. and Pashler, H. 2000. Evidence for split attentional foci. J. Exp.Psych. Hum. Percept. Perform. 26, 2, 834--846.Google ScholarGoogle ScholarCross RefCross Ref
  5. Aziz, M. Z. and Mertsching, B. 2007. Pop-out and IOR in static scenes with region-based visual attention. In Proceedings of the ICVS Workshop on Computational Attention and Applications. ACM, New York.Google ScholarGoogle Scholar
  6. Backer, G. 2004. Modellierung visueller Aufmerksamkeit im Computer-Sehen: Ein zweistufiges Selektionsmodell für ein Aktives Sehsystem. Ph.D. thesis, Universität Hamburg, Germany.Google ScholarGoogle Scholar
  7. Backer, G., Mertsching, B., and Bollmann, M. 2001. Data- and model-driven gaze control for an active-vision system. IEEE Trans. Pattern Anal. Mach. Intell. 23, 12, 1415--1429. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bacon, W. and Egeth, H. 1994. Overriding stimulus-driven attentional capture. Percept. Psychophysics 55, 5, 485--496.Google ScholarGoogle ScholarCross RefCross Ref
  9. Baddeley, R. J. and Tatler, B. W. 2006. High frequency edges (but not contrast) predict where we fixate: A Bayesian system identification analysis. Vision Res. 46, 2824--2833.Google ScholarGoogle ScholarCross RefCross Ref
  10. Balkenius, C. 2000. Attention, habituation and conditioning: towards a computational model. Cognitive Sci. Q. 1, 2, 171--214.Google ScholarGoogle Scholar
  11. Baluja, S. and Pomerleau, D. 1997. Expectation-based selective attention for visual monitoring and control of a robot vehicle. Rob. Auton. Syst. 22, 3-4, 329--344.Google ScholarGoogle ScholarCross RefCross Ref
  12. Belardinelli, A. 2008. Salience features selection: Deriving a model from human evidence. Ph.D. thesis, Sapienza Universita di Roma, Rome, Italy.Google ScholarGoogle Scholar
  13. Ben-Shahar, O., Scholl, B., and Zucker, S. 2007. Attention, segregation, and textons: Bridging the gap between object-based attention and texton-based segregation. Vision Res. 47, 6, 173--178.Google ScholarGoogle ScholarCross RefCross Ref
  14. Bichot, N. P. 2001. Attention, eye movements, and neurons: Linking physiology and behavior. In Vision and Attention, M. Jenkin and L. R. Harris, Eds. Springer Verlag, Berlin.Google ScholarGoogle Scholar
  15. Bichot, N. P., Rossi, A. F., and Desimone, R. 2005. Parallel and serial neural mechanisms for visual search in macaque area V4. Science 308, 5721, 529--534.Google ScholarGoogle Scholar
  16. Bisley, J. and Goldberg, M. 2003. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299, 5603, 81--86.Google ScholarGoogle Scholar
  17. Björkman, M. and Eklundh, J.-O. 2007. Vision in the real world: Finding, attending and recognizing objects. Int. J. Imaging Syst. Technol. 16, 2, 189--208.Google ScholarGoogle ScholarCross RefCross Ref
  18. Bollmann, M. 1999. Entwicklung einer Aufmerksamkeitssteuerung für ein aktives Sehsystem. Ph.D. thesis, Universität Hamburg, Germany.Google ScholarGoogle Scholar
  19. Bollmann, M., Hoischen, R., Jesikiewicz, M., Justkowski, C., and Mertsching, B. 1999. Playing domino: A case study for an active vision system. In Computer Vision Systems, H. Christensen, Ed. Springer, Berlin, 392--411. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Borji, A. 2009. Interactive learning of task-driven visual attention control. Ph.D. thesis, Institute for Research in Fundamental Sciences (IPM), School of Cognitive Sciences (SCS), Tehran, Iran.Google ScholarGoogle Scholar
  21. Breazeal, C. 1999. A context-dependent attention system for a social robot. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 99). Springer, Berlin, 1146--1151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Bruce, N. D. B. and Tsotsos, J. K. 2005a. An attentional framework for stereo vision. In Proceedings of the Canadian Conference on Computer and Robot Vision. IEEE, Los Alamitos. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Bruce, N. D. B. and Tsotsos, J. K. 2005b. Saliency-based on information maximization. In Proceedings of Neural Information Processing Systems (NIPS). MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  24. Bundesen, C. 1990. A theory of visual attention. Psych. Rev. 97, 523--547.Google ScholarGoogle ScholarCross RefCross Ref
  25. Bundesen, C. 1998. A computational theory of visual attention. Philos. Trans. R. Soc., Series B 353, 1271--1281.Google ScholarGoogle ScholarCross RefCross Ref
  26. Bundesen, C. and Habekost, T. 2005. Attention. In Handbook of Cognition, K. Lamberts and R. Goldstone, Eds. Sage Publications, London.Google ScholarGoogle Scholar
  27. Bur, A., Wurtz, P., Müri, R., and Hügli, H. 2007. Motion integration in visual attention models for predicting simple dynamic scenes. In Proceedings of the SPIE Conference on Human Vision and Electronic Imaging. Springer, Berlin.Google ScholarGoogle Scholar
  28. Cameron, E., Tai, J., Eckstein, M., and Carrasco, M. 2004. Signal detection theory applied to three visual search tasks. Spatial Vision 17, 4--5.Google ScholarGoogle Scholar
  29. Carrasco, M., Evert, D. L., Chang, I., and Katz, S. M. 1995. The eccentricity effect: Target eccentricity affects performance on conjunction searches. Percept. Psychophysics 57, 8, 1241--1261.Google ScholarGoogle ScholarCross RefCross Ref
  30. Cassin, B. and Solomon, S. 1990. Dictionary of Eye Terminology. Triad Publishing Company, Gainsville, FL.Google ScholarGoogle Scholar
  31. Cave, K. R. 1999. The Feature Gate model of visual selection. Psych. Res. 62, 182--194.Google ScholarGoogle ScholarCross RefCross Ref
  32. Cave, K. R. and Wolfe, J. M. 1990. Modeling the role of parallel processing in visual search. Cognitive Psych. 22, 2, 225--271.Google ScholarGoogle ScholarCross RefCross Ref
  33. Cherry, E. C. 1953. Some experiments on the recognition of speech, with one and two ears. J. Acoust. Soc. Am. 25, 975--979.Google ScholarGoogle ScholarCross RefCross Ref
  34. Choi, S.-B., Ban, S.-W., and Lee, M. 2004. Biologically motivated visual attention system using bottom-up saliency map and top-down inhibition. Neural Inform. Process. Lett. Rev. 2, 1.Google ScholarGoogle Scholar
  35. Chun, M. M. and Jiang, Y. 1998. Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psych. 36, 28--71.Google ScholarGoogle ScholarCross RefCross Ref
  36. Clark, J. J. and Ferrier, N. J. 1988. Modal control of an attentive vision system. In Proceedings of the 2nd International Conference on Computer Vision. IEEE, Los Alamitos, CA.Google ScholarGoogle Scholar
  37. Clark, J. J. and Ferrier, N. J. 1989. Control of visual attention in mobile robots. In Proceedings of the IEEE Conference on Robotics and Automation. IEEE, Los Alamitos, CA, 826--831.Google ScholarGoogle Scholar
  38. Clark, J. J. and Ferrier, N. J. 1992. Attentive visual serving. In An Introduction to Active Vision, A. Blake and A. Yuille, Eds. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Connor, C. E., Egeth, H. E., and Yantis, S. 2004. Visual attention: Bottom-up versus top-down. Curr. Biol. 14.Google ScholarGoogle Scholar
  40. Corbetta, M. 1990. Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? In Proceedings of the National Academy of Sciences of the United States of America 95, 831--838.Google ScholarGoogle Scholar
  41. Corbetta, M. and Shulman, G. L. 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. 3, 3, 201--215.Google ScholarGoogle ScholarCross RefCross Ref
  42. Dankers, A., Barnes, N., and Zelinsky, A. 2007. A reactive vision system: Active-dynamic saliency. In Proceedings of the 5th International Conference on Computer Vision Systems (ICVS'07). IEEE, Los Alamitos, CA.Google ScholarGoogle Scholar
  43. Desimone, R. and Duncan, J. 1995. Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18, 193--222.Google ScholarGoogle ScholarCross RefCross Ref
  44. Deubel, H. and Schneider, W. X. 1996. Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Res. 36, 12, 1827--1837.Google ScholarGoogle ScholarCross RefCross Ref
  45. Draper, B. A. and Lionelle, A. 2005. Evaluation of selective attention under similarity transformations. J. Comput. Vision Image Understanding 100, 1-2, 152--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Driver, J. and Baylis, G. C. 1998. Attention and visual object segmentation. In The Attentive Brain, R. Parasuraman, Ed. MIT Press, Cambridge, MA, 299--326.Google ScholarGoogle Scholar
  47. Duncan, J. 1984. Selective attention and the organization of visual information. J. Exp. Psych. 113, 501--517.Google ScholarGoogle ScholarCross RefCross Ref
  48. Eckstein, M., Thomas, J., Palmer, J., and Shimozaki, S. 2000. A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Percept. Psychophys. 62, 3, 425--451.Google ScholarGoogle ScholarCross RefCross Ref
  49. Egeth, H. E. and Yantis, S. 1997. Visual attention: Control, representation, and time course. Ann. Rev. Psych. 48, 269--297.Google ScholarGoogle ScholarCross RefCross Ref
  50. Einhäuser, W., Spain, M., and Perona, P. 2008. Objects predict fixations better than early saliency. J. Vision 8, 14, 1--26.Google ScholarGoogle ScholarCross RefCross Ref
  51. Elazary, L. and Itti, L. 2008. Interesting objects are visually salient. J. Vision 8, 3:3, 1--15.Google ScholarGoogle ScholarCross RefCross Ref
  52. Eriksen, C. W. and St. James, J. D. 1986. Visual attention within and around the field of focal attention: A zoom lens model. Percept. Psychophys. 40, 225--240.Google ScholarGoogle ScholarCross RefCross Ref
  53. Findlay, J. M. and Gilchrist, I. D. 2001. Active vision perspective. In Vision & Attention, M. Jenkin and L. R. Harris, Eds. Springer Verlag, Berlin, 83--103.Google ScholarGoogle Scholar
  54. Findlay, J. M. and Walker, R. 1999. A model of saccade generation based on parallel processing and competitive inhibition. Behav. Brain Sci. 22, 661--721.Google ScholarGoogle ScholarCross RefCross Ref
  55. Fink, G., Dolan, R., Halligan, P., Marshall, J., and Frith, C. 1997. Space-based and object-based visual attention: Shared and specific neural domains. Brain 120, 11, 2013--2028.Google ScholarGoogle ScholarCross RefCross Ref
  56. Fleming, K. A., Peters II, R. A., and Bodenheimer, R. E. 2006. Image mapping and visual attention on a sensory ego-sphere. In Proceedings of the Conference on Intelligent Robots and Systems (IROS). IEEE, Los Alamitos, CA, 241--246.Google ScholarGoogle Scholar
  57. Fragopanagos, N. and Taylor, J. 2006. Modelling the interaction of attention and emotion. Neurocomputing 69, 16--18, 1977--1983.Google ScholarGoogle ScholarCross RefCross Ref
  58. Fraundorfer, F. and Bischof, H. 2003. Utilizing saliency operators for image matching. In Proceedings of the International Workshop on Attention and Performance in Computer Vision. Springer, Berlin, 17--24.Google ScholarGoogle Scholar
  59. Frey, H.-P., Honey, C., and König, P. 2008. What's color got to do with it? The influence of color on visual attention in different categories. J. Vision 8, 14, 1--17.Google ScholarGoogle ScholarCross RefCross Ref
  60. Frintrop, S. 2005. VOCUS: A visual attention system for object detection and goal-directed search. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany. Lecture Notes in Artificial Intelligence, vol. 3899, Springer Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Frintrop, S. 2008. The high repeatability of salient regions. In Proceedings of Workshop on Efficient Strategies for Cognitive Agents in Complex Environments. Springer, Berlin.Google ScholarGoogle Scholar
  62. Frintrop, S., Backer, G., and Rome, E. 2005. Goal-directed search with a top-down modulated computational attention system. In Proceedings of the Annual Meeting of the German Association for Pattern Recognition. Springer, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Frintrop, S. and Cremers, A. B. 2007. Top-down attention supports visual loop closing. In Proceedings of the European Conference on Mobile Robotics. Springer, Berlin.Google ScholarGoogle Scholar
  64. Frintrop, S. and Jensfelt, P. 2008. Attentional landmarks and active gaze control for visual SLAM. IEEE Trans. Rob. 24, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Frintrop, S. and Kessel, M. 2009. Most salient region tracking. In Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, Los Alamitos, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Frintrop, S., Klodt, M., and Rome, E. 2007. A real-time visual attention system using integral images. In Proceedings of the 5th International Conference on Computer Vision Systems.Google ScholarGoogle Scholar
  67. Frintrop, S., Königs, A., Hoeller, F., and Schulz, D. 2010. A component-based approach to visual person tracking from a mobile platform. Int. J. So. Rob.Google ScholarGoogle Scholar
  68. Frintrop, S., Nüchter, A., Surmann, H., and Hertzberg, J. 2004. Saliency-based object recognition in 3D data. In Proceedings of the International Conference on Intelligent Robots and Systems. IEEE, Los Alamitos, CA, 2167--2172.Google ScholarGoogle Scholar
  69. Frintrop, S., Rome, E., Nüchter, A., and Surmann, H. 2005. A bimodal laser-based attention system. J. Comput. Vision Image Understand. 100, 1--2, 124--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Fritz, G., Seifert, C., and Paletta, L. 2004. Attentive object detection using an information theoretic saliency measure. In Proceedings of the 2nd International Workshop on Attention and Performance in Computational Vision. Springer, Berlin, 136--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Fritz, J. B., Elhilali, M., David, S. V., and Shamma, S. A. 2007. Auditory attention focusing the searchlight on sound. Curr. Opin. Neurobiol. 17, 437--455.Google ScholarGoogle ScholarCross RefCross Ref
  72. Garey, M. and Johnson, D. S. 1979. Computers and Intractability, A Guide to the Theory of NP-Completeness. Freeman, San Francisco. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Gegenfurtner, K. R. 2003. Cortical mechanisms of color vision. Nat. Rev. Neurosci. 4, 563--572.Google ScholarGoogle ScholarCross RefCross Ref
  74. Ghazanfar, A. and Schroeder, C. 2006. Is neocortex essentially multisensory? Trends Cogn. Sci. 10, 278--285.Google ScholarGoogle Scholar
  75. Giesbrecht, B., Wodorff, M., Song, A., and Mangun, G. 2003. Neural mechanisms of topdown control during spatial and feature attention. Neuroimage 19, 496--512.Google ScholarGoogle ScholarCross RefCross Ref
  76. Gottlieb, J. P., Kusunoki, M., and Goldberg, M. E. 1998. The representation of visual salience in monkey parietal cortex. Nature 391, 481--484.Google ScholarGoogle ScholarCross RefCross Ref
  77. Green, D. M. and Swets, J. A. 1966. Signal Detection Theory and Psychophysics. Wiley, New York.Google ScholarGoogle Scholar
  78. Hamker, F. H. 2005. The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision. J. Comput. Vision Image Understanding 100, 1--2, 64--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Hamker, F. H. 2006. Modeling feature-based attention as an active top-down inference process. BioSystems 86, 91--99.Google ScholarGoogle ScholarCross RefCross Ref
  80. Harel, J., Koch, C., and Perona, P. 2007. Graph-based visual saliency. In Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, Eds. MIT Press, Cambridge, MA, 545--552.Google ScholarGoogle Scholar
  81. Heidemann, G., Rae, R., Bekel, H., Bax, I., and Ritter, H. 2004. Integrating context-free and context-dependent attentional mechanisms for gestural object reference. Mach. Vision Appl. 16, 1, 64--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Heinke, D. and Humphreys, G. W. 2003. Attention, spatial representation and visual neglect: Simulating emergent attention and spatial memory in the selective attention for identification model (SAIM). Psych. Rev. 110, 1, 29--87.Google ScholarGoogle ScholarCross RefCross Ref
  83. Heinke, D. and Humphreys, G. W. 2004. Computational models of visual selective attention. A review. In Connectionist Models in Psychology, G. Houghton, Ed. Psychology Press, Florence, KY, 273--312.Google ScholarGoogle Scholar
  84. Henderson, J. M., Brockmole, J. R., Castelhano, M. S., and Mack, M. 2007. Visual saliency does not account for eye movements during visual search in real-world scenes. In Eye Movements: A Window on Mind and Brain, R. van Gompel, M. Fischer, W. Murray, and R. Hill, Eds. Elsevier, Oxford, 537--562.Google ScholarGoogle Scholar
  85. Horowitz, T. S. and Wolfe, J. M. 2003. Memory for rejected distractors in visual search? Visual Cognition 10, 3, 257--298.Google ScholarGoogle Scholar
  86. Humphreys, G. W. and Müller, H. J. 1993. Search via recursive rejection (SERR): A connectionist model of visual search. Cognitive Psych. 25, 43--110.Google ScholarGoogle ScholarCross RefCross Ref
  87. Itti, L. 2002. Real-time high-performance attention focusing in outdoors color video streams. In Proceedings of the SPIE Conference Human Vision and Electronic Imaging. IEEE, Los Alamitos, CA.Google ScholarGoogle ScholarCross RefCross Ref
  88. Itti, L. 2004. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process. 13, 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Itti, L. 2005. Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Visual Cognition 12, 6, 1093--1123.Google ScholarGoogle ScholarCross RefCross Ref
  90. Itti, L. and Baldi, P. 2009. Bayesian surprise attracts human attention. Vision Res. 49, 10, 1295--1306.Google ScholarGoogle ScholarCross RefCross Ref
  91. Itti, L., Dhavale, N., and Pighin, F. 2003. Realistic avatar eye and head animation using a neurobiological model of visual attention. In Proceedings of the SPIE 48th Annual International Symposium on Optical Science and Technology. IEEE, Los Alamitos, CA.Google ScholarGoogle Scholar
  92. Itti, L. and Koch, C. 2001a. Computational modeling of visual attention. Nat. Rev. Neurosci. 2, 3, 194--203.Google ScholarGoogle ScholarCross RefCross Ref
  93. Itti, L. and Koch, C. 2001b. Feature combination strategies for saliency-based visual attention systems. J. Electr. Imaging 10, 1, 161--169.Google ScholarGoogle ScholarCross RefCross Ref
  94. Itti, L., Koch, C., and Niebur, E. 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 11, 1254--1259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Johansson, R., Westling, G., Backstrom, A., and Flanagan, J. 2001. Eye-hand coordination in object manipulation. J. Neurosci. 21, 17, 6917--6932.Google ScholarGoogle ScholarCross RefCross Ref
  96. Johnson, A. and Proctor, R. 2003. Attention: Theory and Practice. Sage Publications, Newbury Park, CA.Google ScholarGoogle Scholar
  97. Jonides, J. 1981. Voluntary versus automatic control over the mind's eye movements. In Attention and Performance IX, A. D. Long, Ed. Lawrence Erlbaum Associates, NJ, 187--203.Google ScholarGoogle Scholar
  98. Kadir, T. and Brady, M. 2001. Saliency, scale and image description. Int. J. Comput. Vision 45, 2, 83--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Kahneman, D. and Treisman, A. 1992. The reviewing of object files: Object-specific integration of information. Cognitive Psych. 24, 175--219.Google ScholarGoogle ScholarCross RefCross Ref
  100. Kandel, E. R., Schwartz, J. H., and Jessell, T. M. 1996. Essentials of Neural Science and Behavior. McGraw-Hill/Appleton & Lange, New York.Google ScholarGoogle Scholar
  101. Kastner, S. and Ungerleider, L. G. 2001. The neural basis of biased competition in human visual cortex. Neuropsychologia 39, 1263--1276.Google ScholarGoogle ScholarCross RefCross Ref
  102. Koch, C. and Ullman, S. 1985. Shifts in selective visual attention: Towards the underlying neural circuitry. Hum. Neurobiol. 4, 4, 219--227.Google ScholarGoogle Scholar
  103. Kootstra, G., Nederveen, A., and de Boer, B. 2008. Paying attention to symmetry. In Proceedings of the British Machine Vision Conference. Springer, Berlin.Google ScholarGoogle ScholarCross RefCross Ref
  104. Kunar, M., Flusberg, S., and Wolfe, J. 2008. The role of memory and restricted context in repeated visual search. Percept. Psychophys. 70, 314--328.Google ScholarGoogle ScholarCross RefCross Ref
  105. Land, M. F. 2006. Eye-movements and the control of actions in everyday life. Prog. Retinal Eye Res. 25, 296--324.Google ScholarGoogle ScholarCross RefCross Ref
  106. Lee, E. A. 2008. Cyber physical systems: Design challenges. Tech. rep. UCB/EECS-2008-8, EECS Department, University of California, Berkeley.Google ScholarGoogle Scholar
  107. Lee, K., Buxton, H., and Feng, J. 2003. Selective attention for cue-guided search using a spiking neural network. In Proceedings of the International Workshop on Attention and Performance in Computer Vision. IEEE, Los Alamitos, CA, 55--62.Google ScholarGoogle Scholar
  108. Levin, D. 1996. Classifying faces by race: the structure of face categories. J. Exp. Psych. 22, 1364--1382.Google ScholarGoogle Scholar
  109. Li, Z. 2005. The primary visual cortex creates a bottom-up saliency map. In Neurobiology of Attention, L. Itti, G. Rees, and J. Tsotsos, Eds. Elsevier Academic Press.Google ScholarGoogle Scholar
  110. Liu, T., Slotnick, S. D., Serences, J. T., and Yantis, S. 2003. Cortical mechanisms of feature-based intentional control. Cerebral Cortex 13, 12.Google ScholarGoogle ScholarCross RefCross Ref
  111. Livingstone, M. S. and Hubel, D. H. 1987. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7, 11, 3416--3468.Google ScholarGoogle ScholarCross RefCross Ref
  112. Logan, G. D. 1996. The CODE theory of visual attention: an integration of space-based and object-based attention. Psych. Rev. 103, 603--649.Google ScholarGoogle ScholarCross RefCross Ref
  113. Lowe, D. G. 2004. Distinctive image features from scale-invariant key points. Int. J. Comput. Vision 60, 2, 91--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Maki, A., Nordlund, P., and Eklundh, J.-O. 2000. Attentional scene segmentation: Integrating depth and motion. Comput. Vision Image Understanding 78, 3, 351--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Marr, D. 1982. VISION -- A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman and Company, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Maunsell, J. H. R. 1995. The brain's visual world: Representation of visual targets in cerebral cortex. Science 270, 764--769.Google ScholarGoogle ScholarCross RefCross Ref
  117. May, S., Klodt, M., and Rome, E. 2007. GPU-accelerated Affordance Cueing based on Visual Attention. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS). IEEE, Los Alamitos, CA, 3385--3390.Google ScholarGoogle Scholar
  118. Mazer, J. A. and Gallant, J. L. 2003. Goal-related activity in V4 during free viewing visual search. Evidence for a ventral stream visual salience map. Neuron 40, 6, 1241--50.Google ScholarGoogle ScholarCross RefCross Ref
  119. McMains, S. A. and Somers, D. C. 2004. Multiple spotlights of attentional selection in human visual cortex. Neuron 42, 677--686.Google ScholarGoogle ScholarCross RefCross Ref
  120. Mertsching, B., Bollmann, M., Hoischen, R., and Schmalz, S. 1999. The neural active vision system. In Handbook of Computer Vision and Applications, B. Jähne, H. Haussecke, and P. Geissler, Eds. vol. 3. Academic Press, 543--568.Google ScholarGoogle Scholar
  121. Miau, F., Papageorgiou, C., and Itti, L. 2001. Neuromorphic algorithms for computer vision and attention. In Proceedings of the 46th Annual SPIE International Symposium on Optical Science and Technology. IEEE, Los Alamitos, CA, 12--23.Google ScholarGoogle Scholar
  122. Milanese, R. 1993. Detecting salient regions in an image: From biological evidence to computer implementation. Ph.D. thesis, University of Geneva, Switzerland.Google ScholarGoogle Scholar
  123. Milanese, R., Wechsler, H., Gil, S., Bost, J., and Pun, T. 1994. Integration of bottom-up and top-down cues for visual attention using non-linear relaxation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Los Alamitos, CA, 781--785.Google ScholarGoogle Scholar
  124. Mitri, S., Frintrop, S., Pervölz, K., Surmann, H., and Nüchter, A. 2005. Robust object detection at regions of interest with an application in ball recognition. In Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, Los Alamitos, CA, 126--131.Google ScholarGoogle Scholar
  125. Mozer, M. C. 1987. Early parallel processing in reading: A connectionist approach. In Attention and Performance XII: The Psychology of Reading, M. Coltheart, Ed. Lawrence Erlbaum Associated Ltd., Philadelphia, 83--104.Google ScholarGoogle Scholar
  126. Muhl, C., Nagai, Y., and Sagerer, G. 2007. On constructing a communicative space in HRI. In Proceedings of the 30th German Conference on Artificial Intelligence, J. Hertzberg, M. Beetz, and R. Englert, Eds. Springer, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Nagai, Y. 2009. From bottom-up visual attention to robot action learning. In Proceedings of the 8th International IEEE Conference on Development and Learning. IEEE, Los Alamitos, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. Nakayama, K. and Mackeben, M. 1989. Sustained and transient components of focal visual attention. Vision Res. 29, 1631--1647.Google ScholarGoogle ScholarCross RefCross Ref
  129. Nakayama, K. and Silverman, G. H. 1986. Serial and parallel processing of visual feature conjunctions. Nature 320, 264--265.Google ScholarGoogle ScholarCross RefCross Ref
  130. Navalpakkam, V. and Itti, L. 2006a. An integrated model of top-down and bottom-up attention for optimizing detection speed. In Proceedings of the Conference on Computer Vision and Pattern Recognition. IEEE, Los Alamitos, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. Navalpakkam, V. and Itti, L. 2006b. Top-down attention selection is fine-grained. J. Vision 6, 11, 1180--1193.Google ScholarGoogle ScholarCross RefCross Ref
  132. Navalpakkam, V., Rebesco, J., and Itti, L. 2004. Modeling the influence of knowledge of the target and distractors on visual search. J. Vision 4, 8, 690.Google ScholarGoogle ScholarCross RefCross Ref
  133. Navalpakkam, V., Rebesco, J., and Itti, L. 2005. Modeling the influence of task on attention. Vision Res. 45, 2, 205--231.Google ScholarGoogle ScholarCross RefCross Ref
  134. Neisser, U. 1967. Cognitive Psychology. Appleton-Century-Crofts, New York.Google ScholarGoogle Scholar
  135. Nickerson, S. B., Jasiobedzki, P., Wilkes, D., Jenkin, M., Milios, E., Tsotsos, J. K., Jepson, A., and Bains, O. N. 1998. The ARK project: Autonomous mobile robots for known industrial environments. Rob. Auton. Syst. 25, 1--2, 83--104.Google ScholarGoogle ScholarCross RefCross Ref
  136. Nothdurft, H.-C. 2005. Salience of feature contrast. In Neurobiology of Attention, L. Itti, G. Rees, and J. K. Tsotsos, Eds. Elsevier, Burlington, MA, 233--239.Google ScholarGoogle Scholar
  137. Ogawa, T. and Komatsu, H. 2004. Target selection in area V4 during a multidimensional visual search task. J. Neurosci. 24, 28, 6371--6382.Google ScholarGoogle ScholarCross RefCross Ref
  138. Oliva, A. 2005. Gist of the scene. In Neurobiology of Attention, L. Itti, G. Rees, and J. Tsotsos, Eds. Elsevier Academic Press, 251--257.Google ScholarGoogle Scholar
  139. Oliva, A., Torralba, A., Castelhano, M. S., and Henderson, J. M. 2003. Top-down control of visual attention in object detection. In Proceedings of the International Conference on Image Processing. IEEE, Los Alamitos, CA, 253--256.Google ScholarGoogle Scholar
  140. Olshausen, B., Anderson, C., and van Essen, D. 1993. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13, 11, 4700--4719.Google ScholarGoogle ScholarCross RefCross Ref
  141. Olshausen, B. A. and Field, D. J. 2005. How close are we to understanding V1? Neural Comput. 17, 8, 1665--1699. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. Olshausen, B. A. and Field, D. J. 2006. What is the other 85% of V1 doing? In 23 Problems in Systems Neuroscience, L. V. Hemmen and T. Sejnowslti, Eds. Oxford University Press, Oxford, UK.Google ScholarGoogle Scholar
  143. Ouerhani, N. 2003. Visual attention: From bio-inspired modeling to real-time implementation. Ph.D. thesis, Institut de Microtechnique Université de Neuchâtel, Switzerland.Google ScholarGoogle Scholar
  144. Ouerhani, N., Bur, A., and Hügli, H. 2005. Visual attention-based robot self-localization. In Proceedings of the European Conference on Mobile Robotics (ECMR 2005). IEEE, Los Alamitos, CA, 8--13.Google ScholarGoogle Scholar
  145. Ouerhani, N. and Hügli, H. 2000. Computing visual attention from scene depth. In Proceedings of the International Conference on Pattern Recognition (ICPR 2000). Vol. 1. IEEE, Los Alamitos, CA, 375--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. Ouerhani, N., Jost, T., Bur, A., and Hügli, H. 2006. Cue normalization schemes in saliency-based visual attention models. In Proceedings International Cognitive Vision Workshop. Springer, Berlin.Google ScholarGoogle Scholar
  147. Ouerhani, N., von Wartburg, R., Hügli, H., and Müri, R. 2004. Empirical validation of the saliency-based model of visual attention. Electr. Lett. Comput. Vision Image Anal. 3, 1, 13--24.Google ScholarGoogle ScholarCross RefCross Ref
  148. Palmer, J., Ames, C., and Lindsey, D. 1993. Measuring the effect of attention on simple visual search. J. of Experimental Psychology. Hum. Percept. Perform. 19, 1, 108--130.Google ScholarGoogle ScholarCross RefCross Ref
  149. Palmer, S. E. 1999. Vision Science, Photons to Phenomenology. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  150. Parkhurst, D., Law, K., and Niebur, E. 2002. Modeling the role of salience in the allocation of overt visual attention. Vision Res. 42, 1, 107--123.Google ScholarGoogle ScholarCross RefCross Ref
  151. Pashler, H. 1997. The Psychology of Attention. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  152. Pessoa, L. and Exel, S. 1999. Attentional strategies for object recognition. In Proceedings of the International Work Conference on Artificial and Natural Neural Networks. Springer, Berlin, 850--859. Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. Peters, R., Iyer, A., Itti, L., and Koch, C. 2005. Components of bottom-up gaze allocation in natural images. Vision Res. 45, 2397--2416.Google ScholarGoogle ScholarCross RefCross Ref
  154. Peters, R. J. and Itti, L. 2008. Applying computational tools to predict gaze direction in interactive visual environments. ACM Trans. Appl. Percept. 5, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. Phaf, R. H., van der Heijden, A. H. C., and Hudson, P. T. W. 1990. SLAM: A connectionist model for attention in visual selection tasks. Cognitive Psych. 22, 273--341.Google ScholarGoogle ScholarCross RefCross Ref
  156. Posner, M. and Cohen, Y. 1984. Components of visual orienting. In Attention and Performance X, H. Bouma and D. Bouwhuis, Eds. Erlbaum, London, 531--556.Google ScholarGoogle Scholar
  157. Posner, M. I. 1980. Orienting of attention. Q. J. Exp. Psych. 32, 3--25.Google ScholarGoogle ScholarCross RefCross Ref
  158. Posner, M. I. and Petersen, S. E. 1990. The attentional system of the human brain. Ann. Rev. Neurosci. 13, 25--42.Google ScholarGoogle ScholarCross RefCross Ref
  159. Postma, E. 1994. Scan: A neural model of covert attention. Ph.D. thesis, Rijksuniversiteit Limburg, Wageningen.Google ScholarGoogle Scholar
  160. Pylyshyn, Z. and Storm, R. 1988. Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision 3, 179--197.Google ScholarGoogle ScholarCross RefCross Ref
  161. Pylyshyn, Z. W. 2003. Seeing and Visualizing: It's Not What You Think. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  162. Rae, R. 2000. Gestikbasierte Mensch-Maschine-Kommunikation auf der Grundlage visueller Aufmerksamkeit und Adaptivität. Ph.D. thesis, Universität Bielefeld, Germany.Google ScholarGoogle Scholar
  163. Ramström, O. and Christensen, H. I. 2002. Visual attention using game theory. In Proceedings of the Workshop on Biologically Motivated Computer Vision. Springer, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. Ramström, O. and Christensen, H. I. 2004. Object-based visual attention: Searching for objects defined by size. In Proceedings of International Workshop on Attention and Performance in Computational Vision. Springer, Berlin, 9--16.Google ScholarGoogle Scholar
  165. Rao, R., Zelinsky, G., Hayhoe, M., and Ballard, D. 2002. Eye-movements in iconic visual search. Vision Res. 42, 1447--1463.Google ScholarGoogle ScholarCross RefCross Ref
  166. Rasolzadeh, B., Björkman, M., Huebner, K., and Kragic, D. 2009. An active vision system for detecting, fixating and manipulating objects in real world. Int. J. Rob. Res. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. Rauschenberger, R. 2003. Attentional capture by auto- and allo-cues. Psychonomic Bull. Rev. 10, 4, 814--842.Google ScholarGoogle ScholarCross RefCross Ref
  168. Rensink, R. A. 2000. The dynamic representation of scenes. Visual Cognition 7, 17--42.Google ScholarGoogle ScholarCross RefCross Ref
  169. Rensink, R. A., O'Regan, J. K., and Clark, J. J. 1997. To see or not to see: The need for attention to perceive changes in scenes. Psych. Sci. 8, 368--373.Google ScholarGoogle ScholarCross RefCross Ref
  170. Riesenhuber, M. and Poggio, T. 1999. Hierarchical models of object recognition in cortex. Nature Neurosci. 2, 11, 1019--1025.Google ScholarGoogle ScholarCross RefCross Ref
  171. Rosenholtz, R. 2001. Search asymmetries? What search asymmetries? Percept. Psychophys. 63, 3, 476--489.Google ScholarGoogle ScholarCross RefCross Ref
  172. Rotenstein, A., Andreopoulos, A., Fazl, E., Jacob, D., Robinson, M., Shubina, K., Zhu, Y., and Tsotsos, J. 2007. Towards the dream of intelligent, visually-guided wheelchairs. In Proceedings of the 2nd International Conference on Technology and Aging.Google ScholarGoogle Scholar
  173. Rothenstein, A. and Tsotsos, J. 2006a. Attention links sensing to recognition. Image Vision Comput. J. 26, 1, 114--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. Rothenstein, A. and Tsotsos, J. 2006b. Selective tuning: Feature binding through selective attention. In Proceedings of International Conference on Artificial Neural Networks. IEEE, Los Alamitos, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Rybak, I., Gusakova, V., Golovan, A., Podladchikova, L., and Shevtsova, N. 1998. A model of attention-guided visual perception and recognition. Vision Res. 38, 2387--2400.Google ScholarGoogle ScholarCross RefCross Ref
  176. Sabra, A. I. 1989. The Optics of Ibn Al-Haytham. The Warburg Institute, University of London.Google ScholarGoogle Scholar
  177. Salah, A., Alpaydin, E., and Akrun, L. 2002. A selective attention-based method for visual pattern recognition with application to handwritten digit recognition and face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24, 3, 420--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. Sandini, G. and Metta, G. 2002. Retina-like sensors: Motivations, technology and applications. In Sensors and Sensing in Biology and Engineering. Springer Verlag, Berlin.Google ScholarGoogle Scholar
  179. Schauerte, B., Richarz, J., Plötz, T., Thurau, C., and Fink, G. A. 2009. Multi-modal and multi-camera attention in smart environments. In Proceedings of Multi-Modal Interfaces and Workshop on Machine Learning for Multi-Modal Interaction. ACM, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. Scheier, C. and Egner, S. 1997. Visual attention in a mobile robot. In Proceedings of the IEEE International Symposium on Industrial Electronics. IEEE, Los Alamitos, CA, 48--53.Google ScholarGoogle Scholar
  181. Scholl, B. J. 2001. Objects and attention: The state of the art. Cognition 80, 1--46.Google ScholarGoogle ScholarCross RefCross Ref
  182. Shulman, G., Remington, R., and McLean, J. 1979. Moving attention through visual space. J. Exp. Psych. 5, 3, 522--526.Google ScholarGoogle Scholar
  183. Siagian, C. and Itti, L. 2009. Biologically inspired mobile robot vision localization. IEEE Trans. Rob. 25, 4, 861--873. Google ScholarGoogle ScholarDigital LibraryDigital Library
  184. Simons, D. J. and Levin, D. T. 1997. Change blindness. Trends Cognitive Sci. 1, 261--267.Google ScholarGoogle ScholarCross RefCross Ref
  185. Styles, E. A. 1997. The Psychology of Attention. Psychology Press Ltd, Florence, KY.Google ScholarGoogle Scholar
  186. Sumner, P. and Mollon, J. 2000. Catarrhine photopigments are optimized for detecting targets against a foliage background. J. Exp. Biol. 203, 1963--1986.Google ScholarGoogle Scholar
  187. Sun, Y. and Fisher, R. 2003. Object-based visual attention for computer vision. Artif. Intell. 146, 1, 77--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  188. Tatler, B. W. 2007. The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. J. Vision 14, 7, 1--17.Google ScholarGoogle Scholar
  189. Tatler, B. W., Baddeley, R. J., and Gilchrist, I. D. 2005. Visual correlates of fixation selection: effects of scale and time. Vision Res. 45, 643--659.Google ScholarGoogle ScholarCross RefCross Ref
  190. Tatler, B. W., Baddeley, R. J., and Vincent, B. T. 2006. The long and the short of it: Spatial statistics at fixation vary with saccade amplitude and task. Vision Res. 46, 1857--1862.Google ScholarGoogle ScholarCross RefCross Ref
  191. Theeuwes, J. 2004. Top-down search strategies cannot override attentional capture. Psychonomic Bull. Rev. 11, 65--70.Google ScholarGoogle ScholarCross RefCross Ref
  192. Torralba, A. 2003a. Contextual priming for object detection. Int. J. Comput.Vision 53, 2, 169--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. Torralba, A. 2003b. Modeling global scene factors in attention. J. Opt. Soc. Am. 20, 7, 1407--1418.Google ScholarGoogle ScholarCross RefCross Ref
  194. Treisman, A. M. 1993. The perception of features and objects. In Attention: Selection, Awareness, and Control, A. Baddeley and L. Weiskrantz, Eds. Clarendon Press, Oxford, 5--35.Google ScholarGoogle Scholar
  195. Treisman, A. M. and Gelade, G. 1980. A feature integration theory of attention. Cognitive Psych. 12, 97--136.Google ScholarGoogle ScholarCross RefCross Ref
  196. Treisman, A. M. and Gormican, S. 1988. Feature analysis in early vision: Evidence from search asymmetries. Psych. Rev. 95, 1, 15--48.Google ScholarGoogle ScholarCross RefCross Ref
  197. Tsotsos, J., Rodriguez-Sanchez, A., Rothenstein, A., and Simine, E. 2008. Different binding strategies for the different stages of visual recognition. Brain Res. 1225, 119--132.Google ScholarGoogle ScholarCross RefCross Ref
  198. Tsotsos, J. K. 1987. A “complexity level” analysis of vision. In Proceedings of the International Conference on Computer Vision: Human and Machine Vision Workshop. IEEE, Los Alamitos, CA.Google ScholarGoogle Scholar
  199. Tsotsos, J. K. 1990. Analyzing vision at the complexity level. Behav. Brain Sci. 13, 3, 423--445.Google ScholarGoogle ScholarCross RefCross Ref
  200. Tsotsos, J. K. 1993. An inhibitory beam for attentional selection. In Spatial Vision in Humans and Robots, L. R. Harris and M. Jenkin, Eds. Cambridge University Press, Cambridge, UK, 313--331. Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. Tsotsos, J. K., Culhane, S. M., Wai, W. Y. K., Lai, Y., Davis, N., and Nuflo, F. 1995. Modeling visual attention via selective tuning. Artif. Intell. 78, 1-2, 507--545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  202. Tsotsos, J. K., Liu, Y., Martinez-Trujillo, J. C., Pomplun, M., Simine, E., and Zhou, K. 2005. Attenting to visual motion. J. Comput. Vision Image Understanding 100, 1-2, 3--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  203. Tsotsos, J. K., Verghese, G., Stevenson, S., Black, M., Metaxas, D., Culhane, S., Dickinson, S., Jenkin, M., Jepson, A., et al. 1998. PLAYBOT: A visually-guided robot to assist physically disabled children in play. Image Vision Comput. 16, 275--292.Google ScholarGoogle ScholarCross RefCross Ref
  204. Tuytelaars, T. and Mikolajczyk, K. 2007. Local invariant feature detectors: A survey. Found. Trends Comput. Graphics Vision 3, 3, 177--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  205. van Oeffelen, M. P. and Vos, P. G. 1982. Configurational effects on the enumeration of dots: Counting by groups. Memory Cognition 10, 396--404.Google ScholarGoogle ScholarCross RefCross Ref
  206. Vecera, S. and Farah, M. 1994. Does visual attention select objects or locations? J. Exp. Psych. 123, 2, 146--160.Google ScholarGoogle ScholarCross RefCross Ref
  207. Verghese, P. 2001. Visual search and attention: A signal detection theory approach. Neuron 31, 523--535.Google ScholarGoogle ScholarCross RefCross Ref
  208. Vickery, T. J., King, L.-W., and Jiang, Y. 2005. Setting up the target template in visual search. J. Vision 5, 1, 81--92.Google ScholarGoogle ScholarCross RefCross Ref
  209. Vijayakumar, S., Conradt, J., Shibata, T., and Schaal, S. 2001. Overt visual attention for a humanoid robot. In Proceedings of the International Conference on Intelligence in Robotics and Autonomous Systems (IROS 2001). ACM, New York, 2332--2337.Google ScholarGoogle Scholar
  210. Vincent, B. T., Troscianko, T., and Gilchrist, I. D. 2007. Investigating a space-variant weighted salience account of visual selection. Vision Res. 47, 1809--1820.Google ScholarGoogle ScholarCross RefCross Ref
  211. Viola, P. and Jones, M. J. 2004. Robust real-time face detection. Int. J. Comput. Vision 57, 2, 137--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  212. von Helmholtz, H. 1896. Handbuch der physiologischen Optik. Von Leopold Voss Verlag, Hamburg, Germany. (an English Quote is included in Nakayama & Mackeben, 1989).Google ScholarGoogle Scholar
  213. Walther, D. 2006. Interactions of visual attention and object recognition: computational modeling, algorithms, and psychophysics. Ph.D. thesis, California Institute of Technology, Pasadena, CA.Google ScholarGoogle Scholar
  214. Walther, D., Edgington, D. R., and Koch, C. 2004. Detection and tracking of objects in underwater video. In Proceedings of the International Conference on Computer Vision and Pattern Recognition. IEEE, Los Alamitos, CA.Google ScholarGoogle Scholar
  215. Walther, D. and Koch, C. 2007. Attention in hierarchical models of object recognition. Comput. Neurosci. 165, 57--78.Google ScholarGoogle Scholar
  216. Wells, A. and Matthews, G. 1994. Attention and Emotion: A Clinical Perspective. Psychology Press, Florence, KY.Google ScholarGoogle Scholar
  217. Wolfe, J. M. 1994. Guided search 2.0: A revised model of visual search. Psychonomic Bull. Rev. 1, 2, 202--238.Google ScholarGoogle ScholarCross RefCross Ref
  218. Wolfe, J. M. 1998a. Visual search. In Attention, H. Pashler, Ed. Psychology Press, Florence, KY, 13--74.Google ScholarGoogle Scholar
  219. Wolfe, J. M. 1998b. What can 1,000,000 trials tell us about visual search? Psych. Sci. 9, 1, 33--39.Google ScholarGoogle ScholarCross RefCross Ref
  220. Wolfe, J. M. 2001a. Asymmetries in visual search: An introduction. Percept. Psychophys. 63, 3, 381--389.Google ScholarGoogle ScholarCross RefCross Ref
  221. Wolfe, J. M. 2001b. Guided search 4.0: A guided search model that does not require memory for rejected distractors. J. Vision 1, 3, 349a.Google ScholarGoogle ScholarCross RefCross Ref
  222. Wolfe, J. M. 2007. Guided search 4.0: Current progress with a model of visual search. In Integrated Models of Cognitive Systems, W. D. Gray, Ed. Oxford University Press, Oxford, UK.Google ScholarGoogle Scholar
  223. Wolfe, J. M., Cave, K., and Franzel, S. 1989. Guided search: An alternative to the feature integration model for visual search. J. Exp. Psych. 15, 419--433.Google ScholarGoogle Scholar
  224. Wolfe, J. M. and Gancarz, G. 1996. Guided Search 3.0: Basic and Clinical Applications of Vision Science. Kluwer Academic, The Netherlands, 189--192.Google ScholarGoogle Scholar
  225. Wolfe, J. M., Horowitz, T., Kenner, N., Hyle, M., and Vasan, N. 2004. How fast can you change your mind? The speed of top-down guidance in visual search. Vision Res. 44, 1411--1426.Google ScholarGoogle ScholarCross RefCross Ref
  226. Wolfe, J. M. and Horowitz, T. S. 2004. What attributes guide the deployment of visual attention and how do they do it? Nat. Rev. Neurosci. 5, 1--7.Google ScholarGoogle ScholarCross RefCross Ref
  227. Xu, T., Chenkov, N., Kühnlenz, K., and Buss, M. 2009. Autonomous switching of top-down and bottom-up attention selection for vision guided mobile robots. In Proceedings of the International Conference on Intelligent Robots and Systems. ACM, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  228. Xu, T., Pototschnig, T., Kühnlenz, K., and Buss, M. 2009. A high-speed multi-GPU implementation of bottom-up attention using CUDA. In Proceedings of the International Conference on Robotics and Automation. IEEE, Los Alamitos, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  229. Yantis, S. 2000. Goal-directed and stimulus-driven determinants of attentional control. In Attention and Performance, S. Monsell and J. Driver, Eds. Vol. 18. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  230. Yantis, S., Ach, J. S., Serences, J., Carlson, R., Steinmetz, M., Pekar, J., and Courtney, S. 2002. Transient neural activity in human parietal cortex during spatial attention shifts. Nat. Neurosci. 5, 995--1002.Google ScholarGoogle ScholarCross RefCross Ref
  231. Yantis, S. and Serences, J. T. 2003. Cortical mechanisms of space-based and object-based attentional control. Curr. Opin. Neurobiol. 13, 187--193.Google ScholarGoogle ScholarCross RefCross Ref
  232. Yarbus, A. L. 1967. Eye-Movements and Vision. Plenum Press, New York.Google ScholarGoogle Scholar
  233. Zeki, S. 1993. A Vision of the Brain. Blackwell Scientific, Cambridge, MA.Google ScholarGoogle Scholar
  234. Zelinsky, G. J. and Sheinberg, D. L. 1997. Eye-movements during parallel-serial visual search. J. Exp. Psych. Hum. Percept. Perform. 23, 1, 244--262.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Computational visual attention systems and their cognitive foundations: A survey

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in

                Full Access

                • Published in

                  cover image ACM Transactions on Applied Perception
                  ACM Transactions on Applied Perception  Volume 7, Issue 1
                  January 2010
                  154 pages
                  ISSN:1544-3558
                  EISSN:1544-3965
                  DOI:10.1145/1658349
                  Issue’s Table of Contents

                  Copyright © 2010 ACM

                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 18 January 2010
                  • Accepted: 1 November 2008
                  • Revised: 1 July 2008
                  • Received: 1 February 2007
                  Published in tap Volume 7, Issue 1

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article
                  • Research
                  • Refereed

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader