skip to main content
research-article

Physical reproduction of materials with specified subsurface scattering

Published:26 July 2010Publication History
Skip Abstract Section

Abstract

We investigate a complete pipeline for measuring, modeling, and fabricating objects with specified subsurface scattering behaviors. The process starts with measuring the scattering properties of a given set of base materials, determining their radial reflection and transmission profiles. We describe a mathematical model that predicts the profiles of different stackings of base materials, at arbitrary thicknesses. In an inverse process, we can then specify a desired reflection profile and compute a layered composite material that best approximates it. Our algorithm efficiently searches the space of possible combinations of base materials, pruning unsatisfactory states imposed by physical constraints. We validate our process by producing both homogeneous and heterogeneous composites fabricated using a multi-material 3D printer. We demonstrate reproductions that have scattering properties approximating complex materials.

References

  1. Cortat, F. 2004. The Kubelka-Munk theory, applications and modifications. Presentation for the graduate course on Optical properties of Paper, Linkoping University.Google ScholarGoogle Scholar
  2. 2010. Discrete Hankel Transforms. http://www.gnu.org/software/gsl/manual/html_node/Discrete-Hankel-Transforms.html.Google ScholarGoogle Scholar
  3. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating Spatially-Varying Subsurface Scattering. ACM Transactions on Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Donner, C., and Jensen, H. W. 2005. Light Diffusion in Multi-Layered Translucent Materials. ACM Transactions on Graphics, Vol. 24, No. 3, 1032--1039. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Donner, C., Weyrich, T., d'Eon, E., Ramamoorthi, R., and Rusinkiewicz, S. 2008. A Layered, Heterogeneous Reflectance Model for Acquiring and Rendering Human Skin. ACM Transactions on Graphics, Vol. 27, No. 5 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Donner, C., Lawrence, J., Ramamoorthi, R., Hachisuka, T., Jensen, H. W., and Nayar, S. 2009. An Empirical BSSRDF Model. ACM Transactions on Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fuchs, M., Raskar, R., Seidel, H.-P., and Lensch, H. P. A. 2008. Towards passive 6D reflectance field displays. In ACM Transactions on Graphics, ACM, New York, NY, USA, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ghosh, A., Hawkins, T., Peers, P., Frederiksen, S., and Debevec, P. 2008. Practical Modeling and Acquisition of Layered Facial Reflectance. ACM Transactions on Graphics, Vol. 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Goesele, M., Lensch, H. P. A., Lang, J., Fuchs, C., and Peter Siedel, H. 2004. DISCO: Acquisition of translucent objects. ACM Transactions on Graphics, Vol. 23, No. 3, 835--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Haase, C. S., and Meyer, G. W. 1992. Modeling pigmented materials for realistic image synthesis. ACM Transactions on Graphics, Vol. 11, No. 4, 305--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hanrahan, P., and Krueger, W. 1993. Reflection from Layered Surfaces due to Subsurface Scattering. In Computer Graphics (Proceedings of SIGGRAPH 93), 164--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hawkins, T., Einarsson, P., and Debevec, P. 2005. Acquisition of time-varying participating media. ACM Transactions on Graphics, Vol. 24, No. 3, 812--815. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of ACM SIGGRAPH 2001, 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kubelka, P., and Munk, F. 1931. Ein Beitrag zur Optik der Farbanstriche. Zeitschrift für technische Physik, Vol. 12, 593--601. English translation by Steve Westin.Google ScholarGoogle Scholar
  15. Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics (Proceedings of SIGGRAPH 87), Vol. 21, No. 4, 163--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P., Pellacini, F., and Rusinkiewicz, S. 2009. Printing Spatially-Varying Reflectance. ACM Transactions on Graphics, Vol. 28, No. 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Narasimhan, S. G., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S. K., and Jensen, H. W. 2006. Acquiring scattering properties of participating media by dilution. ACM Transactions on Graphics, Vol. 25, No. 3, 1003--1012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards.Google ScholarGoogle Scholar
  19. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM Transactions on Graphics, Vol. 25, No. 3, 746--753. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Peng, J., Kristjansson, D., and Zorin, D. 2004. Interactive modeling of topologically complex geometric detail. ACM Transactions on Graphics, Vol. 23, No. 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pharr, M., and Hanrahan, P. 2000. Monte Carlo evaluation of non-linear scattering equations for subsurface reflection. In Proceedings of ACM SIGGRAPH 2000, 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Saito, T., and Toriwaki, J. I. 1994. New algorithms for Euclidean distance transformations of an n-dimensional digitized picture with applications. Pattern Recognition, Vol. 27, 1551--1565.Google ScholarGoogle ScholarCross RefCross Ref
  23. Song, Y., Tong, X., Pellacini, F., and Peers, P. 2009. SubEdit: A Representation for Editing Measured Heterogeneous Subsurface Scattering. ACM Transactions on Graphics, Vol. 28, No. 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Stam, J. 1995. Multiple scattering as a diffusion process. In Rendering Techniques, 41--50.Google ScholarGoogle Scholar
  25. Stam, J. 2001. An Illumination Model for a Skin Layer Bounded by Rough Surfaces. In Rendering Techniques, 39--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tariq, S., Gardner, A., Llamas, I., Jones, A., Debevec, P., and Turk, G. 2006. Efficient Estimation of Spatially Varying Subsurface Scattering Parameters. In Vision, Modeling, and Visualization.Google ScholarGoogle Scholar
  27. Tong, X., Wang, J., Lin, S., Guo, B., and Yeung Shum, H. 2005. Modeling and Rendering of Quasi-Homogeneous Materials. ACM Transactions on Graphics, Vol. 24, No. 3, 1054--1061. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., and Shum, H.-Y. 2008. Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Transactions on Graphics, Vol. 27, No. 1, 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Weisstein, E. W., 2010. Hankel Transform. From Math-World - A Wolfram Web Resource. http://mathworld.wolfram.com/HankelTransform.html.Google ScholarGoogle Scholar
  30. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of Human Faces using a Measurement-Based Skin Reflectance Model. ACM Transactions on Graphics, Vol. 25, 1013--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating Microgeometry for Custom Surface Reflectance. ACM Transactions on Graphics, Vol. 28, No. 3. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Physical reproduction of materials with specified subsurface scattering

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 29, Issue 4
            July 2010
            942 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1778765
            Issue’s Table of Contents

            Copyright © 2010 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 26 July 2010
            Published in tog Volume 29, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader