skip to main content
research-article

Rigid-body fracture sound with precomputed soundbanks

Published:26 July 2010Publication History
Skip Abstract Section

Abstract

We propose a physically based algorithm for synthesizing sounds synchronized with brittle fracture animations. Motivated by laboratory experiments, we approximate brittle fracture sounds using time-varying rigid-body sound models. We extend methods for fracturing rigid materials by proposing a fast quasistatic stress solver to resolve near-audio-rate fracture events, energy-based fracture pattern modeling and estimation of "crack"-related fracture impulses. Multipole radiation models provide scalable sound radiation for complex debris and level of detail control. To reduce soundmodel generation costs for complex fracture debris, we propose Precomputed Rigid-Body Soundbanks comprised of precomputed ellipsoidal sound proxies. Examples and experiments are presented that demonstrate plausible and affordable brittle fracture sounds.

Skip Supplemental Material Section

Supplemental Material

tp092-10.mp4

mp4

46.9 MB

References

  1. Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. IEEE Transactions on Visualization and Computer Graphics, 14, 370--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bielser, D., Glardon, P., Teschner, M., and Gross, M. H. 2004. A state machine for real-time cutting of tetrahedral meshes. Graphical Models 66, 6, 398--417. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bonet, J., and Wood, R. D. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.Google ScholarGoogle Scholar
  4. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. 2008. Fast modal sounds with scalable frequency-domain synthesis. ACM Transactions on Graphics 27, 3 (Aug.), 24:1--24:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Carpinteri, A., and Lacidogna, G. 2007. Earthquakes and Acoustic Emission. Taylor & Francis.Google ScholarGoogle Scholar
  6. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic Shells: A practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cook, P. 1997. Physically Informed Sonic Modeling (PhISM): Synthesis of percussive sounds. Computer Music Journal, 38--49.Google ScholarGoogle Scholar
  8. Dobashi, Y., Yamamoto, T., and Nishita, T. 2003. Real-time rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Transactions on Graphics 22, 3 (July), 732--740. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Doel, K., Knott, D., and Pai, D. 2004. Interactive simulation of complex audiovisual scenes. Presence: Teleoperators & Virtual Environments 13, 1, 99--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dunegan, H., Harris, D., and Tatro, C. 1968. Fracture analysis by use of acoustic emission. Eng Fracture Mechanics 1, 1.Google ScholarGoogle ScholarCross RefCross Ref
  11. Golub, G. H., and Van Loan, C. F. 1996. Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore, MD, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gross, D., and Seeling, T. 2006. Fracture mechanics: with an introduction to micromechanics. Springer.Google ScholarGoogle Scholar
  13. Gross, S., Fineberg, J., Marder, M., McCormick, W., and Swinney, H. 1993. Acoustic emissions from rapidly moving cracks. Physical review letters 71, 19, 3162--3165.Google ScholarGoogle Scholar
  14. Grosse, C., and Ohtsu, M. 2008. Acoustic Emission Testing. Springer Verlag.Google ScholarGoogle Scholar
  15. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex rigid bodies with stacking. In Proc. ACM SIGGRAPH, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gumerov, N. A., and Duraiswami, R. 2004. Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, first ed. Elsevier Science.Google ScholarGoogle Scholar
  17. Hahn, J., Fouad, H., Gritz, L., and Lee, J. 1998. Integrating sounds and motions in virtual environments. Presence 7, 1, 67--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hamming, R. W. 1983. Digital Filters. Prentice-Hall.Google ScholarGoogle Scholar
  19. Harris, M. 2007. Optimizing Parallel Reduction in CUDA. NVIDIA Developer Technology.Google ScholarGoogle Scholar
  20. Hellrung, J., Selle, A., Shek, A., Sifakis, E., and Teran, J. 2009. Geometric fracture modeling in Bolt. In SIGGRAPH 2009: Talks, ACM, New York, NY, USA, 1--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Imagire, T., Johan, H., and Nishita, T. 2009. A fast method for simulating destruction and the generated dust and debris. The Visual Computer 25, 5--7 (May), 719--727. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. James, D. L., and Pai, D. K. 2002. DyRT: Dynamic response textures for real time deformation simulation with graphics hardware. In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. James, D. L., and Pai, D. K. 2004. BD-Tree: Output-sensitive collision detection for reduced deformable models. ACM Transactions on Graphics 23, 3 (Aug.), 393--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July), 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Labelle, F., and Shewchuk, J. R. 2007. Isosurface stuffing: Fast tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics 26, 3 (July), 57:1--57:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lehoucq, R., Sorensen, D., and Yang, C. 1998. ARPACK Users' Guide: Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM.Google ScholarGoogle Scholar
  27. Li, Z., and Bazant, Z. 1998. Acoustic emissions in fracturing sea ice plate simulated by particle system. Journal of Engineering Mechanics 124, 1, 69--79.Google ScholarGoogle ScholarCross RefCross Ref
  28. L'iu, Y. J. 2009. Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge University Press.Google ScholarGoogle Scholar
  29. Lockner, D., Byerlee, J., Kuksenko, V., Ponomarev, A., and Sidorin, A. 1991. Quasi-static fault growth and shear fracture energy in granite. Nature 350 (March), 39--42.Google ScholarGoogle ScholarCross RefCross Ref
  30. Lockner, D. 1993. The role of acoustic emission in the study of rock fracture. In Intl. J. Rock Mech. Mining Sci., vol. 30, Pergamon, 883--889.Google ScholarGoogle ScholarCross RefCross Ref
  31. Luyten, H., and Vliet, T. 2006. Acoustic emission, fracture behavior and morphology of dry crispy foods: A discussion article. Journal of Texture Studies 37, 3, 221--240.Google ScholarGoogle ScholarCross RefCross Ref
  32. McAdams, S., Chaigne, A., and Roussarie, V. 2004. The psychomechanics of simulated sound sources: Material properties of impacted bars. The Journal of the Acoustical Society of America 115, 3, 1306--1320.Google ScholarGoogle ScholarCross RefCross Ref
  33. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Transactions on Graphics 23, 3 (Aug.), 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Morse, P., and Ingard, K. 1986. Theoretical Acoustics. Princeton University Press.Google ScholarGoogle Scholar
  35. Müller, M., Dorsey, J., and McMillan, L. 2001. Real-time simulation of deformation and fracture of stiff materials. In Eurographics Computer Animation and Simulation, SpringerVerlag Wien, 113--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. 1991. Animation of fracture by physical modeling. The Visual Computer 7, 4, 210--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. O'Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 529--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Transactions on Graphics 21, 3 (July), 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. O'Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In 2002 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 175--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ochmann, M. 1995. The Source Simulation Technique for Acoustic Radiation Problems. Acustica 81.Google ScholarGoogle Scholar
  42. Pai, D. K., van den Doel, K., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3d objects. In ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Paige, C. C., and Saunders, M. A. 1975. Solution of sparse indefinite systems of linear equations. SIAM J. Numerical Analysis 12, 617--629.Google ScholarGoogle ScholarCross RefCross Ref
  44. Parker, E. G., and O'Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In SCA '09: Proc. 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, 165--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Transactions on Graphics 24, 3 (Aug.), 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Pentland, A., and Williams, J. 1989. Good Vibrations: Modal Dynamics for Graphics and Animation. In Computer Graphics (Proceedings of SIGGRAPH 89), vol. 23, 215--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Picard, C., Tsingos, N., and Faure, F. 2009. Retargetting example sounds to interactive physics-driven animations. In AES 35th International Conference on Audio for Games.Google ScholarGoogle Scholar
  48. Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. 2007. Numerical Recipes: The art of scientific computing. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Raghavachary, S. 2002. Fracture generation on polygonal meshes using Voronoi polygons. In ACM SIGGRAPH 2002 Conference Abstracts and Applications, ACM, New York, NY, USA, 187--187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Raghuvanshi, N., and Lin, M. C. 2006. Interactive Sound Synthesis for Large Scale Environments. In SI3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, ACM Press, New York, NY, USA, 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Rocchesso, D., and Fontana, F., Eds. 2003. The Sounding Object. Edizioni di Mondo Estremo, Florence, Italy, ch. Highlevel models: bouncing, breaking, rolling, crumpling, pouring (by M. Rath and F. Fontana), 186--187.Google ScholarGoogle Scholar
  52. Shabana, A. A. 1990. Theory of Vibration, Volume II: Discrete and Continuous Systems. Springer-Verlag, New York, NY.Google ScholarGoogle Scholar
  53. Smith, J., Witkin, A., and Baraff, D. 2000. Fast and control-lable simulation of the shattering of brittle objects. In Graphics Interface, Blackwell Publishing, 27--34.Google ScholarGoogle Scholar
  54. Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In SCA '09: Proc. 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, 155--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Takala, T., and Hahn, J. 1992. Sound rendering. In Computer Graphics (Proceedings of SIGGRAPH 92), 211--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In Computer Graphics (Proceedings of SIGGRAPH 88), 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Trebien, F., and Oliveira, M. M. 2009. Realistic real-time sound re-synthesis and processing for interactive virtual worlds. The Visual Computer 25, 5--7 (May), 469--477. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Tsingos, N., Gallo, E., and Drettakis, G. 2004. Perceptual audio rendering of complex virtual environments. ACM Transactions on Graphics 23, 3 (Aug.), 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. van den Doel, K., and Pai, D. K. 1996. Synthesis of shape dependent sounds with physical modeling. In Intl Conf. on Auditory Display.Google ScholarGoogle Scholar
  60. van den Doel, K., Kry, P. G., and Pai, D. K. 2001. FoleyAutomatic: Physically-Based Sound Effects for Interactive Simulation and Animation. In ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Warren, W., and Verbrugge, R. 1984. Auditory perception of breaking and bouncing events: A case study in ecological acoustics. Journal of Experimental Psychology 10, 5, 704--712.Google ScholarGoogle ScholarCross RefCross Ref
  62. Zheng, C., and James, D. L. 2009. Harmonic Fluids. ACM Transactions on Graphics 28, 3 (July), 37:1--37:12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Rigid-body fracture sound with precomputed soundbanks

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 29, Issue 4
                July 2010
                942 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/1778765
                Issue’s Table of Contents

                Copyright © 2010 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 26 July 2010
                Published in tog Volume 29, Issue 4

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader