skip to main content
research-article

Sounding liquids: Automatic sound synthesis from fluid simulation

Published:02 July 2010Publication History
Skip Abstract Section

Abstract

We present a novel approach for synthesizing liquid sounds directly from visual simulation of fluid dynamics. Our approach takes advantage of the fact that the sound generated by liquid is mainly due to the vibration of resonating bubbles in the medium and performs automatic sound synthesis by coupling physically-based equations for bubble resonance with multiple fluid simulators. We effectively demonstrate our system on several benchmarks using a real-time shallow-water fluid simulator as well as a hybrid grid-SPH simulator.

Skip Supplemental Material Section

Supplemental Material

moss.mov

mov

61.2 MB

References

  1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. In ACM SIGGRAPH 2007 Papers. ACM, 48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3, 100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. 2008. Fast modal sounds with scalable frequency-domain synthesis. ACM Trans. Graph. 27, 3, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bridson, R. and Müller-Fischer, M. 2007. Fluid simulation: SIGGRAPH 2007 Course notes. In ACM SIGGRAPH 2007 Courses. ACM, 1--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. In ACM SIGGRAPH 2004 Papers. ACM, 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cook, P. R. and Scavone, G. P. The synthesis ToolKit in c++ 4.3.1. http://ccrma-stanford.edu/software/stk/download.html.Google ScholarGoogle Scholar
  7. Deane, G. B. and Stokes, M. D. 2002. Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 6900, 839--844.Google ScholarGoogle Scholar
  8. Ding, J., Tsaur, F. W., Lips, A., and Akay, A. 2007. Acoustical observation of bubble oscillations induced by bubble popping. Phys. Rev. E, Statist. Nonlinear Soft Matter Phys. 75, 1.Google ScholarGoogle ScholarCross RefCross Ref
  9. Dobashi, Y., Yamamoto, T., and Nishita, T. 2003. Real-Time rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Trans. Graph. 22, 3, 732--740. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dobashi, Y., Yamamoto, T., and Nishita, T. 2004. Synthesizing sound from turbulent field using sound textures for interactive fluid simulation. Comput. Graph. Forum 23, 3, 539--545.Google ScholarGoogle ScholarCross RefCross Ref
  11. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Florens, J. and Cadoz, C. 1991. The physical model: Modeling and simulating the instrumental universe. In Representations of Musical Signals. MIT Press, 227--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Foster, N. and Fedkiw, R. 2001. Practical animation of liquids. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Foster, N. and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 5, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hess, P. 2007. Extended boundary conditions for shallow water simulations. Ph.D. thesis, ETH Zurich.Google ScholarGoogle Scholar
  16. Hong, J., Lee, H., Yoon, J., and Kim, C. 2008. Bubbles alive. In ACM SIGGRAPH 2008 Papers. ACM, 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Imura, M., Nakano, Y., Yasumuro, Y., Manabe, Y., and Chihara, K. 2007. Real-Time generation of CG and sound of liquid with bubble. In ACM SIGGRAPH 2007 Posters. ACM, 97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. James, D. L., Barbič, J., and Pai, D. K. 2006. Precomputed acoustic transfer: Output-Sensitive, accurate sound generation for geometrically complex vibration sources. ACM Trans. Graph. 25, 3, 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Leighton, T. G. 1994. The Acoustic Bubble. Academic Press, San Diego, CA.Google ScholarGoogle Scholar
  20. Longuet-Higgins, M. S. 1989a. Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal Modes. J. Fluid Mech. 201, 525--541.Google ScholarGoogle ScholarCross RefCross Ref
  21. Longuet-Higgins, M. S. 1989b. Monopole emission of sound by asymmetric bubble oscillations. Part 2. An initial-value problem. J. Fluid Mech. 201, 543--565.Google ScholarGoogle ScholarCross RefCross Ref
  22. Longuet-Higgins, M. S. 1990. Bubble noise spectra. J. Acoust. Soc. Amer. 87, 2, 652--661.Google ScholarGoogle ScholarCross RefCross Ref
  23. Longuet-Higgins, M. S. 1991. Resonance in nonlinear bubble oscillations. J. Fluid Mech. 224, 531--549.Google ScholarGoogle ScholarCross RefCross Ref
  24. Longuet-Higgins, M. S. 1992. Nonlinear damping of bubble oscillations by resonant interaction. J. Acoust. Soc. Amer. 91, 3, 1414--1422.Google ScholarGoogle ScholarCross RefCross Ref
  25. Lorensen, W. E. and Cline, H. E. 1987. Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21, 4, 163--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In ACM SIGGRAPH 2004 Papers. ACM, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mihalef, V., Metaxas, D., and Sussman, M. 2009. Simulation of two-phase flow with sub-scale droplet and bubble effects. In Proceedings of Eurographics.Google ScholarGoogle Scholar
  28. Minnaert, M. 1933. On musical air bubbles and the sound of running water. Philosop. Mag. 16, 235--248.Google ScholarGoogle Scholar
  29. Müller, M., Charypar, D., and Gross, M. 2003. Particle-Based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-Based fluid-fluid interaction. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 237--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Narain, R., Kwatra, V., Lee, H., Kim, T., Carlson, M., and Lin, M. 2007. Feature-Guided dynamic texture synthesis on continuous flows. In Feature-Guided Dynamic Texture Synthesis on Continuous Flows.Google ScholarGoogle Scholar
  32. O'Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, 529--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. O'Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 175--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Picard, C., Tsingos, N., and Faure, F. 2009. Retargetting example sounds to interactive physics-driven animations. In Proceedings of the AES 35th International Conference, Audio in Games.Google ScholarGoogle Scholar
  35. Plesset, M. and Prosperetti, A. 1977. Bubble dynamics and cavitation. In Ann. Rev. Fluid Mech. 9, 145--185.Google ScholarGoogle ScholarCross RefCross Ref
  36. Pozrikidis, C. 2004. Three-Dimensional oscillations of rising bubbles. Engin. Anal. Bound. Elements 28, 4, 315--323.Google ScholarGoogle ScholarCross RefCross Ref
  37. Prosperetti, A. and Oguz, H. 1993. The impact of drops on liquid surfaces and the underwater noise of rain. Ann. Rev. Fluid Mech. 25, 577--602.Google ScholarGoogle ScholarCross RefCross Ref
  38. Pumphrey, H. C. and Elmore, P. A. 1990. The entrainment of bubbles by drop impacts. J. Fluid Mech. 220, 539--567.Google ScholarGoogle ScholarCross RefCross Ref
  39. Raghuvanshi, N. and Lin, M. C. 2006. Interactive sound synthesis for large scale environments. In Proceedings of the Symposium on Interactive 3D Graphics and Games. ACM, 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rayleigh, L. 1917. On pressure developed in a liquid during the collapse of a spherical cavity. Philosoph. Mag. 34, 199.Google ScholarGoogle Scholar
  41. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. 2008. Two-Way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27, 3, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Scavone, G. P. and Cook, P. R. 1998. Real-Time computer modeling of woodwind instruments. In Proceedings of the International Symposium on Musical Acoustics. Acoustical Society of America, Woodbury, NY.Google ScholarGoogle Scholar
  43. Sirignano, W. A. 2000. Fluid dynamics and transport of droplets and sprays. J. Fluids Engin. 122, 1, 189--190.Google ScholarGoogle ScholarCross RefCross Ref
  44. Stam, J. 1999. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Thürey, N., Müller-Fischer, M., Schirm, S., and Gross, M. 2007. Real-Time breaking waves for shallow water simulations. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications. IEEE Computer Society, 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Thürey, N., Sadlo, F., Schirm, S., Müller-Fischer, M., and Gross, M. 2007b. Real-Time simulations of bubbles and foam within a shallow water framework. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 191--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Trebien, F. and Oliveira, M. 2009. Realistic real-time sound re-synthesis and processing for interactive virtual worlds. The Visual Comput. 25, 5, 469--477. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. van den Doel, K. 2005. Physically based models for liquid sounds. ACM Trans. Appl. Percept. 2, 4, 534--546. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. van den Doel, K., Kry, P. G., and Pai, D. K. 2001. Foleyautomatic: Physically-Based sound effects for interactive simulation and animation. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. van den Doel, K. and Pai, D. K. 2002. Measurements of perceptual quality of contact sound models. In Proceedings of the of the International Conference on Auditory Display (ICAD'02). 345--349.Google ScholarGoogle Scholar
  51. Zheng, C. and James, D. L. 2009. Harmonic fluids. In ACM SIGGRAPH 2009 Papers. ACM, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Sounding liquids: Automatic sound synthesis from fluid simulation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 29, Issue 3
        June 2010
        104 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1805964
        Issue’s Table of Contents

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 2 July 2010
        • Accepted: 1 February 2010
        • Received: 1 November 2009
        Published in tog Volume 29, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader