skip to main content
10.1145/1806689.1806769acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

An improved LP-based approximation for steiner tree

Published:05 June 2010Publication History

ABSTRACT

The Steiner tree problem is one of the most fundamental NP-hard problems: given a weighted undirected graph and a subset of terminal nodes, find a minimum-cost tree spanning the terminals. In a sequence of papers, the approximation ratio for this problem was improved from 2 to the current best 1.55 [Robins,Zelikovsky-SIDMA'05]. All these algorithms are purely combinatorial. A long-standing open problem is whether there is an LP-relaxation for Steiner tree with integrality gap smaller than 2 [Vazirani,Rajagopalan-SODA'99]. In this paper we improve the approximation factor for Steiner tree, developing an LP-based approximation algorithm. Our algorithm is based on a, seemingly novel, iterative randomized rounding technique. We consider a directed-component cut relaxation for the k-restricted Steiner tree problem. We sample one of these components with probability proportional to the value of the associated variable in the optimal fractional solution and contract it. We iterate this process for a proper number of times and finally output the sampled components together with a minimum-cost terminal spanning tree in the remaining graph. Our algorithm delivers a solution of cost at most ln(4) times the cost of an optimal k-restricted Steiner tree. This directly implies a ln(4)+ε<1.39 approximation for Steiner tree. As a byproduct of our analysis, we show that the integrality gap of our LP is at most $1.55$, hence answering to the mentioned open question. This might have consequences for a number of related problems.

References

  1. A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm for the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3): 440--456, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. Alon and J. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken, NJ, third edition, 2008.Google ScholarGoogle Scholar
  3. A. Archer, M. Bateni, M. Hajiaghayi, and H. Karloff. Improved approximation algorithms for prize-collecting Steiner tree and TSP. In FOCS, pages 427--436, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM, 45(5):753--782, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Information Processing Letters, 32(4):171--176, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Borchers and D. Du. The k-Steiner ratio in graphs. SIAM Journal on Computing, 26(3):857--869, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G. Borradaile, C. Kenyon-Mathieu, and P. Klein. A polynomial-time approximation scheme for Steiner tree in planar graphs. In SODA, pages 1285--1294, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Chakrabarty, N. R. Devanur, and V. V. Vazirani. New geometry-inspired relaxations and algorithms for the metric Steiner tree problem. In IPCO, pages 344--358, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Charikar and S. Guha. Improved combinatorial algorithms for facility location problems. SIAM Journal on Computing, 34:803--824, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Chleb'ık and J. Chleb'ıková. The Steiner tree problem on graphs: Inapproximability results. Theoretical Computer Science, 406(3):207--214, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195--207, 1972.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Edmonds. Optimum branchings. J. Res. Nat. Bur. Standards, B71:233--240, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  13. F. Eisenbrand and F. Grandoni. An improved approximation algorithm for virtual private network design. In SODA, pages 928--932, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. F. Eisenbrand, F. Grandoni, G. Oriolo, and M. Skutella. New approaches for virtual private network designs. SIAM Journal on Computing 37(3): 706--721, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Approximating connected facility location problems via random facility sampling and core detouring. In SODA, pages 1174--1183, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Connected Facility Location via Random Sampling and Core Detouring. Journal of Computer and System Sciences. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Frank and É. Tardos. An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica, 7:49--65, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM Journal on Applied Mathematics, 32:826--834, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  19. M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathematics, 16(1):1--29, January 1968.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. X. Goemans and Y. S. Myung. A catalog of Steiner tree formulations. Networks, 23:19--28, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. X. Goemans and D.P. Williamson. A general approximation technique for constrained forest problems. SIAM Journal on Computing, 24:296--317, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. F. Grandoni and G. F. Italiano. Improved approximation for single-sink buy-at-bulk. In ISAAC, pages 111--120, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Grötschel, L. Lovasz, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1:169--197, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a virtual private network: a network design problem for multicommodity flow. In STOC, pages 389--398, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Gupta, A. Kumar, M. Pál, and T. Roughgarden. Approximation via cost sharing: simpler and better approximation algorithms for network design. Journal of the ACM, 54(3):11, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. F.K. Hwang, D.S. Richards, and P. Winter. The Steiner tree problem. Monograph in Annals of Discrete Mathematics, 53. Elsevier, Amsterdam, 1992.Google ScholarGoogle Scholar
  28. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. In FOCS, pages 448--457, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner tree problems. Journal of Combinatorial Optimization, 1(1):47--65, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  30. L. G. Khachiyan. A polynomial algorithm for linear programming. Soviet Math. Doklady, 20:191--194, 1979. (Russian original in Doklady Akademiia Nauk SSSR, 244:1093--1096).Google ScholarGoogle Scholar
  31. J. Könemann, D. Pritchard, and K. Tan. A partition-based relaxation for Steiner trees. CoRR, abs/0712.3568, 2007.Google ScholarGoogle Scholar
  32. B. Korte and J. Vygen. Combinatorial Optimization -- Theory and Algorithms. Springer-Verlag, Second Edition, 2002.Google ScholarGoogle Scholar
  33. D. Mölle, S. Richter, and P. Rossmanith. A faster algorithm for the Steiner tree problem. In STACS 2006, pages 561--570, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. T. Polzin and S. V. Daneshmand. On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters, 31:12--20, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. H. J. Prömel and A. Steger. A new approximation algorithm for the Steiner tree problem with performance ratio 5/3. Journal of Algorithms, 36:89--101, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. S. Rajagopalan and V. V. Vazirani. On the bidirected cut relaxation for the metric Steiner tree problem. In SODA, pages 742--751, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. R. Rizzi. On Rajagopalan and Vazirani's 3/2-approximation bound for the Iterated 1-Steiner heuristic. Information Processing Letters, 86(6):335--338, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation. SIAM Journal on Discrete Mathematics, 19(1):122--134, 2005. A preliminary version appeared in SODA 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. C. Swamy and A. Kumar. Prima-dual algorithms for connected facility location problems. Algorithmica, 40(4):245--269, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. K. Talwar. The single-sink buy-at-bulk LP has constant integrality gap. In IPCO, pages 475--486, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. A. Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorithmica, 9:463--470, 1993.Google ScholarGoogle Scholar

Index Terms

  1. An improved LP-based approximation for steiner tree

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '10: Proceedings of the forty-second ACM symposium on Theory of computing
      June 2010
      812 pages
      ISBN:9781450300506
      DOI:10.1145/1806689

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 June 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader