skip to main content
10.1145/1806689.1806794acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Interactive privacy via the median mechanism

Published:05 June 2010Publication History

ABSTRACT

We define a new interactive differentially private mechanism --- the median mechanism --- for answering arbitrary predicate queries that arrive online. Given fixed accuracy and privacy constraints, this mechanism can answer exponentially more queries than the previously best known interactive privacy mechanism (the Laplace mechanism, which independently perturbs each query result). With respect to the number of queries, our guarantee is close to the best possible, even for non-interactive privacy mechanisms. Conceptually, the median mechanism is the first privacy mechanism capable of identifying and exploiting correlations among queries in an interactive setting.

We also give an efficient implementation of the median mechanism, with running time polynomial in the number of queries, the database size, and the domain size. This efficient implementation guarantees privacy for all input databases, and accurate query results for almost all input distributions. The dependence of the privacy on the number of queries in this mechanism improves over that of the best previously known efficient mechanism by a super-polynomial factor, even in the non-interactive setting.

References

  1. A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In Proceedings of the 40th annual ACM symposium on Theory of computing, pages 609--618. ACM New York, NY, USA, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. L. Devroye. Non-uniform random variate generation. 1986.Google ScholarGoogle Scholar
  3. M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for approximating the volume of convex bodies. Journal of the ACM (JACM), 38(1):1--17, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In Proceedings of the Third Theory of Cryptography Conference TCC, volume 3876 of Lecture Notes in Computer Science, page 265. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. I. Dinur and K. Nissim. Revealing information while preserving privacy. In 22nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages 202--210, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. 9}DNRRV09C. Dwork, M. Naor, O. Reingold, G.N. Rothblum, and S. Vadhan. On the complexity of differentially private data release: efficient algorithms and hardness results. In Proceedings of the 41st annual ACM symposium on Symposium on theory of computing, pages 381--390. ACM New York, NY, USA, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. Dwork. Differential privacy: A survey of results. In Proceedings of Theory and Applications of Models of Computation, 5th International Conference, TAMC 2008, volume 4978 of Lecture Notes in Computer Science, page 1. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing privacy mechanisms. In Proceedings of the 41st annual ACM symposium on Symposium on theory of computing, pages 351--360. ACM New York, NY, USA, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Hardt and K. Talwar. On the Geometry of Differential Privacy. In The 42nd ACM Symposium on the Theory of Computing, 2010. STOC'10, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S.P. Kasiviswanathan, H.K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What Can We Learn Privately? In IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, 2008. FOCS'08, pages 531--540, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. F. McSherry and K. Talwar. Mechanism design via differential privacy. In Proceedings of the 48th Annual Symposium on Foundations of Computer Science, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Ullman and S. Vadhan. PCPs and the Hardness of Generating Synthetic Data . Manuscript, 2010.Google ScholarGoogle Scholar
  13. V. Vapnik. Structure of statistical learning theory. Computational Learning and Probabilistic Reasoning, page 3, 1996.Google ScholarGoogle Scholar

Index Terms

  1. Interactive privacy via the median mechanism

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '10: Proceedings of the forty-second ACM symposium on Theory of computing
      June 2010
      812 pages
      ISBN:9781450300506
      DOI:10.1145/1806689

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 June 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader